# Jake Yeung
# Date of Creation: 2021-07-11
# File: ~/projects/scChIX/analysis_scripts/3g-load_LDA_featuresfilt_cellsfilt_output.R
#
rm(list=ls())
library(dplyr)
library(tidyr)
library(ggplot2)
library(data.table)
library(Matrix)
library(topicmodels)
library(hash)
library(igraph)
library(umap)
hubprefix <- "/home/jyeung/hub_oudenaarden"
jsettings <- umap.defaults
jsettings$n_neighbors <- 30
jsettings$min_dist <- 0.1
jsettings$random_state <- 123
jmarks <- c("K36", "K9m3")
names(jmarks) <- jmarks
# Load LDA ---------------------------------------------------------------
jdate <- "2021-07-10"
infs.lda <- lapply(jmarks, function(jmark){
inf.lda.tmp <- file.path(hubprefix,
paste0("jyeung/data/dblchic/gastrulation/LDA_outputs/ldaAnalysis_topfeatures_K36_genebodies_K9m3_bins_merged/lda_outputs.countmat_featuresfilt_cellsfilt_K36_genebodies_K9m3_bins.", jdate, ".", jmark, ".K-30.binarize.FALSE/ldaOut.countmat_featuresfilt_cellsfilt_K36_genebodies_K9m3_bins.", jdate, ".", jmark, ".K-30.Robj"))
assertthat::assert_that(file.exists(inf.lda.tmp))
return(inf.lda.tmp)
})
out.objs.lst <- lapply(infs.lda, function(jinf){
load(jinf, v=T)
return(list(out.lda = out.lda, count.mat = count.mat))
})
out.ldas.lst <- lapply(out.objs.lst, function(jout){
jout$out.lda
})
tm.results.lst <- lapply(out.ldas.lst, function(jlda){
tm.result <- posterior(jlda)
AddTopicToTmResult(tm.result)
})
count.mats.lst <- lapply(out.objs.lst, function(jout){
jout$count.mat
})
# Load metas --------------------------------------------------------------
indir.meta <- file.path(hubprefix, "jyeung/data/dblchic/gastrulation/from_analysis/rds_objs_celltyping_from_cleaned_LDA2/dbl_cleaned")
dats.meta <- lapply(jmarks, function(jmark){
inf.meta.tmp <- file.path(indir.meta, paste0("celltyping_output_filt.", jmark, ".2021-07-11.rds"))
readRDS(inf.meta.tmp) %>%
dplyr::select(-umap1, -umap2)
})
# Make clusters -----------------------------------------------------------
dat.umaps.lst <- lapply(tm.results.lst, function(jtm){
DoUmapAndLouvain(topics.mat = jtm$topics, jsettings = jsettings)
})
dat.umaps.merge.lst <- lapply(jmarks, function(jmark){
left_join(dat.umaps.lst[[jmark]], dats.meta[[jmark]]) %>%
rowwise() %>%
mutate(stage = strsplit(cell, "-")[[1]][[1]])
})
# check louvain vscluster
m.lst <- lapply(dat.umaps.merge.lst, function(jdat){
ggplot(jdat, aes(x = umap1, y = umap2, color = louvain)) +
geom_point() +
theme_bw() +
theme(aspect.ratio=1, panel.grid.major = element_blank(), panel.grid.minor = element_blank())
})
m.clst.lst <- lapply(dat.umaps.merge.lst, function(jdat){
ggplot(jdat, aes(x = umap1, y = umap2, color = cluster)) +
geom_point() +
theme_bw() +
theme(aspect.ratio=1, panel.grid.major = element_blank(), panel.grid.minor = element_blank())
})
dat.umaps.merge.cleaned.lst <- lapply(dat.umaps.merge.lst, function(jdat){
# use new louvains as cluster
jdat$cluster <- NULL
jdat$louvain <- paste("cluster", jdat$louvain, sep = "")
jdat <- jdat %>%
dplyr::rename(cluster = louvain)
})
m.cleaned.lst <- lapply(dat.umaps.merge.cleaned.lst, function(jdat){
ggplot(jdat, aes(x = umap1, y = umap2, color = cluster)) +
geom_point() +
theme_bw() +
theme(aspect.ratio=1, panel.grid.major = element_blank(), panel.grid.minor = element_blank())
})
# Save meta, countmat, LDA objects ---------------------------------------
outdir <- file.path(hubprefix, "jyeung/data/dblchic/gastrulation/from_analysis/rds_objs_celltyping_from_cleaned_K36genebodies_K9m3bins_merged/dbl_cleaned")
dir.create(outdir)
lapply(jmarks, function(jmark){
metaname <- paste0("celltyping_output_filt.", jmark, ".", Sys.Date(), ".rds")
metapath <- file.path(outdir, metaname)
jtmp <- dat.umaps.merge.cleaned.lst[[jmark]]
print(dim(jtmp))
saveRDS(jtmp, file = metapath)
})
lapply(jmarks, function(jmark){
metaname <- paste0("countmat_output_filt.", jmark, ".", Sys.Date(), ".rds")
metapath <- file.path(outdir, metaname)
jtmp <- count.mats.lst[[jmark]]
print(dim(jtmp))
saveRDS(jtmp, file = metapath)
})
lapply(jmarks, function(jmark){
metaname <- paste0("lda_output_filt.", jmark, ".", Sys.Date(), ".rds")
metapath <- file.path(outdir, metaname)
jtmp <- out.ldas.lst[[jmark]]
print(dim(jtmp))
saveRDS(jtmp, file = metapath)
})
# write pdfs
lapply(jmarks, function(jmark){
outpdfname <- paste0("plots.", jmark, ".", Sys.Date(), ".pdf")
outpdfpath <- file.path(outdir, outpdfname)
pdf(file = outpdfpath, useDingbats = FALSE)
print(m.cleaned.lst[[jmark]])
dev.off()
})
# write meta and countmat for dbl
# load dbl countmat
jmarkdbl <- "K36-K9m3"
inf.count.mat.dbl <- file.path(hubprefix, paste0("jyeung/data/dblchic/gastrulation/from_analysis/coords_filtered_K36_K9m3_merged_with_dbl/countmat_featuresfilt_cellsfilt_K36_genebodies_K9m3_bins.2021-07-11.", jmarkdbl, ".rds"))
assertthat::assert_that(file.exists(inf.count.mat.dbl))
count.mat.dbl <- readRDS(inf.count.mat.dbl)
# load dbl meta
inf.meta.dbl <- file.path(indir.meta, paste0("celltyping_output_filt.", jmarkdbl, ".2021-07-11.rds"))
assertthat::assert_that(file.exists(inf.meta.dbl))
dat.meta.dbl <- readRDS(inf.meta.dbl)
metapath.dbl <- file.path(outdir, paste0("celltyping_output_filt.", jmarkdbl, ".", Sys.Date(), ".rds"))
countpath.dbl <- file.path(outdir, paste0("countmat_output_filt.", jmarkdbl, ".", Sys.Date(), ".rds"))
ldapath.dbl <- file.path(outdir, paste0("lda_output_filt.", jmarkdbl, ".", Sys.Date(), ".rds"))
inf.lda.dbl <- file.path(hubprefix, paste0("jyeung/data/dblchic/gastrulation/LDA_outputs/ldaAnalysis_topfeatures_K36_genebodies_K9m3_bins_merged_with_dbl/lda_outputs.countmat_featuresfilt_cellsfilt_K36_genebodies_K9m3_bins.2021-07-11.", jmarkdbl, ".K-30.binarize.FALSE/ldaOut.countmat_featuresfilt_cellsfilt_K36_genebodies_K9m3_bins.2021-07-11.", jmarkdbl, ".K-30.Robj"))
load(inf.lda.dbl, v=T)
out.lda.dbl <- out.lda
saveRDS(count.mat.dbl, file = countpath.dbl)
saveRDS(dat.meta.dbl, file = metapath.dbl)
saveRDS(out.lda.dbl, file = ldapath.dbl)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.