#
# Copyright (C) 2013-2021 University of Amsterdam
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
mlRegressionDecisionTree <- function(jaspResults, dataset, options, state = NULL) {
# Preparatory work
dataset <- .readDataRegressionAnalyses(dataset, options)
.mlRegressionErrorHandling(dataset, options, type = "rpart")
# Check if analysis is ready to run
ready <- .mlRegressionReady(options, type = "rpart")
# Compute results and create the model summary table
.mlRegressionTableSummary(dataset, options, jaspResults, ready, position = 1, type = "rpart")
# If the user wants to add the values to the data set
.mlRegressionAddPredictionsToData(dataset, options, jaspResults, ready)
# Add test set indicator to data
.mlAddTestIndicatorToData(options, jaspResults, ready, purpose = "regression")
# Create the data split plot
.mlPlotDataSplit(dataset, options, jaspResults, ready, position = 2, purpose = "regression", type = "rpart")
# Create the evaluation metrics table
.mlRegressionTableMetrics(dataset, options, jaspResults, ready, position = 3)
# Create the variable importance table
.mlDecisionTreeTableVarImp(options, jaspResults, ready, position = 4, purpose = "regression")
# Create the shap table
.mlTableShap(dataset, options, jaspResults, ready, position = 5, purpose = "regression")
# Create the splits table
.mlDecisionTreeTableSplits(options, jaspResults, ready, position = 6, purpose = "regression")
# Create the predicted performance plot
.mlRegressionPlotPredictedPerformance(options, jaspResults, ready, position = 7)
# Create the optimization plot
.mlDecisionTreePlotError(dataset, options, jaspResults, ready, position = 8, purpose = "regression")
# Create the decision tree plot
.mlDecisionTreePlotTree(dataset, options, jaspResults, ready, position = 9, purpose = "regression")
}
.decisionTreeRegression <- function(dataset, options, jaspResults, ready) {
# Import model formula from jaspResults
formula <- jaspResults[["formula"]]$object
# Split the data into training and test sets
if (options[["holdoutData"]] == "testSetIndicator" && options[["testSetIndicatorVariable"]] != "") {
# Select observations according to a user-specified indicator (included when indicator = 1)
trainingIndex <- which(dataset[, options[["testSetIndicatorVariable"]]] == 0)
} else {
# Sample a percentage of the total data set
trainingIndex <- sample.int(nrow(dataset), size = ceiling((1 - options[["testDataManual"]]) * nrow(dataset)))
}
trainingAndValidationSet <- dataset[trainingIndex, ]
# Create the generated test set indicator
testIndicatorColumn <- rep(1, nrow(dataset))
testIndicatorColumn[trainingIndex] <- 0
if (options[["modelOptimization"]] == "manual") {
# Just create a train and a test set (no optimization)
trainingSet <- trainingAndValidationSet
testSet <- dataset[-trainingIndex, ]
# Check for factor levels in the test set that are not in the training set
.checkForNewFactorLevelsInPredictionSet(trainingSet, testSet, "test")
complexityPenalty <- options[["complexityParameter"]]
trainingFit <- rpart::rpart(
formula = formula, data = trainingSet, method = "anova", x = TRUE, y = TRUE,
control = rpart::rpart.control(minsplit = options[["minObservationsForSplit"]],
minbucket = options[["minObservationsInNode"]], maxdepth = options[["interactionDepth"]], cp = complexityPenalty)
)
} else if (options[["modelOptimization"]] == "optimized") {
# Create a train, validation and test set (optimization)
validationIndex <- sample.int(nrow(trainingAndValidationSet), size = ceiling(options[["validationDataManual"]] * nrow(trainingAndValidationSet)))
testSet <- dataset[-trainingIndex, ]
validationSet <- trainingAndValidationSet[validationIndex, ]
trainingSet <- trainingAndValidationSet[-validationIndex, ]
# Check for factor levels in the test set that are not in the training set
.checkForNewFactorLevelsInPredictionSet(trainingSet, testSet, "test")
# Check for factor levels in the validation set that are not in the training set
.checkForNewFactorLevelsInPredictionSet(trainingSet, validationSet, "validation")
cps <- seq(0, options[["maxComplexityParameter"]], by = 0.01)
errorStore <- trainErrorStore <- numeric(length(cps))
startProgressbar(length(cps))
for (i in seq_along(cps)) {
trainingFit <- rpart::rpart(
formula = formula, data = trainingSet, method = "anova", x = TRUE, y = TRUE,
control = rpart::rpart.control(minsplit = options[["minObservationsForSplit"]],
minbucket = options[["minObservationsInNode"]], maxdepth = options[["interactionDepth"]], cp = cps[i])
)
errorStore[i] <- mean((predict(trainingFit, newdata = validationSet) - validationSet[, options[["target"]]])^2)
trainErrorStore[i] <- mean((predict(trainingFit, newdata = trainingSet) - trainingSet[, options[["target"]]])^2)
progressbarTick()
}
complexityPenalty <- cps[which.min(errorStore)]
trainingFit <- rpart::rpart(
formula = formula, data = trainingSet, method = "anova", x = TRUE, y = TRUE,
control = rpart::rpart.control(minsplit = options[["minObservationsForSplit"]],
minbucket = options[["minObservationsInNode"]], maxdepth = options[["interactionDepth"]], cp = complexityPenalty)
)
validationPredictions <- predict(trainingFit, newdata = validationSet)
}
# Use the specified model to make predictions for dataset
testPredictions <- predict(trainingFit, newdata = testSet)
dataPredictions <- predict(trainingFit, newdata = dataset)
# Create results object
result <- list()
result[["formula"]] <- formula
result[["model"]] <- trainingFit
result[["penalty"]] <- complexityPenalty
result[["testMSE"]] <- mean((testPredictions - testSet[, options[["target"]]])^2)
result[["ntrain"]] <- nrow(trainingSet)
result[["train"]] <- trainingSet
result[["test"]] <- testSet
result[["ntest"]] <- nrow(testSet)
result[["testReal"]] <- testSet[, options[["target"]]]
result[["testPred"]] <- testPredictions
result[["testIndicatorColumn"]] <- testIndicatorColumn
result[["values"]] <- dataPredictions
if (options[["modelOptimization"]] != "manual") {
result[["accuracyStore"]] <- errorStore
result[["validMSE"]] <- mean((validationPredictions - validationSet[, options[["target"]]])^2)
result[["nvalid"]] <- nrow(validationSet)
result[["valid"]] <- validationSet
result[["trainAccuracyStore"]] <- trainErrorStore
}
result[["explainer"]] <- DALEX::explain(result[["model"]], type = "regression", data = result[["train"]][, options[["predictors"]], drop = FALSE], y = result[["train"]][, options[["target"]]], predict_function = function(model, data) predict(model, newdata = data))
return(result)
}
.mlDecisionTreeTableVarImp <- function(options, jaspResults, ready, position, purpose) {
if (!is.null(jaspResults[["featureImportanceTable"]]) || !options[["featureImportanceTable"]]) {
return()
}
table <- createJaspTable(title = gettext("Feature Importance Metrics"))
table$position <- position
table$dependOn(options = c(
"featureImportanceTable", "featureImportancePermutations", "trainingDataManual", "scaleVariables", "target", "predictors", "seed", "setSeed",
"testSetIndicatorVariable", "testSetIndicator", "holdoutData", "testDataManual", "minObservationsForSplit", "minObservationsInNode", "interactionDepth", "complexityParameter"
))
table$addColumnInfo(name = "predictor", title = " ", type = "string")
table$addColumnInfo(name = "imp", title = gettext("Relative Importance"), type = "number")
table$addColumnInfo(name = "dl", title = gettext("Mean dropout loss"), type = "number")
jaspResults[["featureImportanceTable"]] <- table
if (!ready) {
return()
}
result <- switch(purpose,
"classification" = jaspResults[["classificationResult"]]$object,
"regression" = jaspResults[["regressionResult"]]$object
)
if (is.null(result[["model"]][["variable.importance"]])) {
table$addFootnote(gettext("No splits were made in the tree."))
return()
}
varImpOrder <- sort(result[["model"]][["variable.importance"]], decreasing = TRUE)
vars <- as.character(names(varImpOrder))
table[["predictor"]] <- vars
table[["imp"]] <- as.numeric(varImpOrder) / sum(as.numeric(varImpOrder)) * 100
.setSeedJASP(options) # Set the seed to make results reproducible
if (purpose == "regression") {
fi <- DALEX::model_parts(result[["explainer"]], B = options[["featureImportancePermutations"]])
} else if (purpose == "classification") {
fi <- DALEX::model_parts(result[["explainer_fi"]], B = options[["featureImportancePermutations"]])
}
fi <- aggregate(x = fi[["dropout_loss"]], by = list(y = fi[["variable"]]), FUN = mean)
table[["dl"]] <- fi[match(vars, fi[["y"]]), "x"]
if (purpose == "regression") {
loss_function <- gettext("root mean squared error (RMSE)")
} else {
if (nlevels(result[["testReal"]]) == 2) {
loss_function <- gettext("1 - area under curve (AUC)")
} else {
loss_function <- gettext("cross entropy")
}
}
table$addFootnote(gettextf("Mean dropout loss (defined as %1$s) is based on %2$s permutations.", loss_function, options[["featureImportancePermutations"]]))
}
.mlDecisionTreeTableSplits <- function(options, jaspResults, ready, position, purpose) {
if (!is.null(jaspResults[["splitsTable"]]) || !options[["splitsTable"]]) {
return()
}
table <- createJaspTable(title = gettext("Splits in Tree"))
table$position <- position
if (purpose == "regression") {
table$dependOn(options = c("splitsTable", "splitsTreeTable", .mlRegressionDependencies()))
} else {
table$dependOn(options = c("splitsTable", "splitsTreeTable", .mlClassificationDependencies()))
}
table$addColumnInfo(name = "predictor", title = "", type = "string")
table$addColumnInfo(name = "count", title = gettext("Obs. in Split"), type = "integer")
table$addColumnInfo(name = "index", title = gettext("Split Point"), type = "number")
table$addColumnInfo(name = "improve", title = gettext("Improvement"), type = "number")
jaspResults[["splitsTable"]] <- table
if (!ready) {
return()
}
result <- switch(purpose,
"classification" = jaspResults[["classificationResult"]]$object,
"regression" = jaspResults[["regressionResult"]]$object
)
if (is.null(result[["model"]]$splits)) {
table$addFootnote(gettext("No splits were made in the tree."))
return()
} else if (options[["splitsTreeTable"]]) {
table$addFootnote(gettext("For each level of the tree, only the split with the highest improvement in deviance is shown."))
}
splits <- result[["model"]]$splits
if (options[["splitsTreeTable"]]) {
# Only show the splits actually in the tree (aka with the highest OOB improvement)
splits <- splits[splits[, 1] > 0, , drop = FALSE] # Discard the leaf splits
df <- as.data.frame(splits)
df$names <- rownames(splits)
df$group <- c(1, 1 + cumsum(splits[-1, 1] != splits[-nrow(df), 1]))
splitList <- split(df, f = df$group)
rows <- as.data.frame(matrix(0, nrow = length(splitList), ncol = 4))
for(i in 1:length(splitList)) {
maxImprove <- splitList[[i]][which.max(splitList[[i]][["improve"]]), ]
rows[i, 1] <- maxImprove$names
rows[i, 2] <- maxImprove$count
rows[i, 3] <- as.numeric(maxImprove$index)
rows[i, 4] <- as.numeric(maxImprove$improve)
}
table[["predictor"]] <- rows[, 1]
table[["count"]] <- rows[, 2]
table[["index"]] <- rows[, 3]
table[["improve"]] <- rows[, 4]
} else {
table[["predictor"]] <- rownames(splits)
table[["count"]] <- splits[, 1]
table[["index"]] <- splits[, 4]
table[["improve"]] <- splits[, 3]
}
}
.mlDecisionTreePlotTree <- function(dataset, options, jaspResults, ready, position, purpose) {
if (!is.null(jaspResults[["decisionTreePlot"]]) || !options[["decisionTreePlot"]]) {
return()
}
plot <- createJaspPlot(plot = NULL, title = gettext("Decision Tree Plot"), width = 600, height = 500)
plot$position <- position
if (purpose == "regression") {
plot$dependOn(options = c("decisionTreePlot", .mlRegressionDependencies()))
} else {
plot$dependOn(options = c("decisionTreePlot", .mlClassificationDependencies()))
}
jaspResults[["decisionTreePlot"]] <- plot
if (!ready) {
return()
}
result <- switch(purpose,
"classification" = jaspResults[["classificationResult"]]$object,
"regression" = jaspResults[["regressionResult"]]$object
)
result[["model"]]$call$data <- result[["train"]] # Required
if (is.null(result[["model"]]$splits)) {
plot$setError(gettext("Plotting not possible: No splits were made in the tree."))
return()
}
ptry <- try({
plotData <- partykit::as.party(result[["model"]])
p <- ggparty::ggparty(plotData)
# The following lines come from rpart:::print.rpart()
x <- result[["model"]]
frame <- x$frame
ylevel <- attr(x, "ylevels")
digits <- 3
tfun <- (x$functions)$print
if (!is.null(tfun)) {
if (is.null(frame$yval2)) {
yval <- tfun(frame$yval, ylevel, digits, nsmall = 20)
} else {
yval <- tfun(frame$yval2, ylevel, digits, nsmall = 20)
}
} else {
yval <- format(signif(frame$yval, digits))
}
leafs <- which(x$frame$var == "<leaf>")
labels <- yval[leafs]
if (purpose == "classification") {
labels <- strsplit(labels, split = " ")
labels <- unlist(lapply(labels, `[[`, 1))
colors <- .mlColorScheme(length(unique(labels)))
cols <- colors[factor(labels)]
alpha <- 0.3
} else {
cols <- "white"
alpha <- 1
}
nodeNames <- p$data$splitvar
nodeNames[is.na(nodeNames)] <- labels
p$data$info <- paste0(nodeNames, "\nn = ", p$data$nodesize)
for (i in 2:length(p$data$breaks_label)) {
s <- strsplit(p$data$breaks_label[[i]], split = " ")
if (!("NA" %in% s[[1]])) { # That means that it is a non-numeric split
p$data$breaks_label[[i]] <- paste(p$data$breaks_label[[i]], collapse = " + ")
} else {
s[[1]][length(s[[1]])] <- format(as.numeric(s[[1]][length(s[[1]])]), digits = 3)
s <- paste0(s[[1]], collapse = " ")
p$data$breaks_label[[i]] <- s
}
}
p <- p + ggparty::geom_edge() +
ggparty::geom_edge_label(fill = "white", col = "darkred") +
ggparty::geom_node_splitvar(mapping = ggplot2::aes(size = max(3, nodesize) / 2, label = info), fill = "white", col = "black") +
ggparty::geom_node_label(mapping = ggplot2::aes(label = info, size = max(3, nodesize) / 2), ids = "terminal", fill = cols, col = "black", alpha = alpha) +
ggplot2::scale_x_continuous(name = NULL, limits = c(min(p$data$x) - abs(0.1 * min(p$data$x)), max(p$data$x) * 1.1)) +
ggplot2::scale_y_continuous(name = NULL, limits = c(min(p$data$y) - abs(0.1 * min(p$data$y)), max(p$data$y) * 1.1)) +
jaspGraphs::geom_rangeframe(sides = "") +
jaspGraphs::themeJaspRaw() +
ggplot2::theme(
axis.ticks = ggplot2::element_blank(),
axis.text.x = ggplot2::element_blank(),
axis.text.y = ggplot2::element_blank()
)
})
if (isTryError(ptry)) {
plot$setError(gettextf("Plotting not possible: An error occurred while creating this plot: %s", .extractErrorMessage(ptry)))
} else {
plot$plotObject <- p
}
}
.mlDecisionTreePlotError <- function(dataset, options, jaspResults, ready, position, purpose) {
if (!is.null(jaspResults[["optimPlot"]]) || !options[["optimPlot"]] || options[["modelOptimization"]] == "manual") {
return()
}
plotTitle <- switch(purpose,
"classification" = gettext("Classification Accuracy Plot"),
"regression" = gettext("Mean Squared Error Plot")
)
plot <- createJaspPlot(plot = NULL, title = plotTitle, width = 400, height = 300)
plot$position <- position
if (purpose == "regression") {
plot$dependOn(options = c("optimPlot", .mlRegressionDependencies()))
} else {
plot$dependOn(options = c("optimPlot", .mlClassificationDependencies()))
}
jaspResults[["optimPlot"]] <- plot
if (!ready) {
return()
}
result <- switch(purpose,
"classification" = jaspResults[["classificationResult"]]$object,
"regression" = jaspResults[["regressionResult"]]$object
)
ylabel <- switch(purpose,
"classification" = gettext("Classification Accuracy"),
"regression" = gettext("Mean Squared Error")
)
xvalues <- rep(seq(0, options[["maxComplexityParameter"]], by = 0.01), 2)
yvalues1 <- result[["accuracyStore"]]
yvalues2 <- result[["trainAccuracyStore"]]
yvalues <- c(yvalues1, yvalues2)
type <- rep(c(gettext("Validation set"), gettext("Training set")), each = length(yvalues1))
plotData <- data.frame(x = xvalues, y = yvalues, type = type)
xBreaks <- jaspGraphs::getPrettyAxisBreaks(c(0, plotData$x), min.n = 4)
yBreaks <- jaspGraphs::getPrettyAxisBreaks(plotData$y, min.n = 4)
pointData <- data.frame(
x = result[["penalty"]],
y = yvalues1[which(xvalues == result[["penalty"]])]
)
p <- ggplot2::ggplot(data = plotData, ggplot2::aes(x = x, y = y)) +
jaspGraphs::geom_line(mapping = ggplot2::aes(linetype = type)) +
ggplot2::scale_x_continuous(name = gettext("Complexity Penalty"), breaks = xBreaks, limits = c(0, max(xBreaks))) +
ggplot2::scale_y_continuous(name = ylabel, breaks = yBreaks, limits = range(yBreaks)) +
ggplot2::labs(linetype = NULL) +
ggplot2::scale_linetype_manual(values = c(2, 1)) +
jaspGraphs::geom_point(data = pointData, ggplot2::aes(x = x, y = y), fill = "red", inherit.aes = FALSE) +
jaspGraphs::geom_rangeframe() +
jaspGraphs::themeJaspRaw(legend.position = "top")
plot$plotObject <- p
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.