#' @title align_batch
#' @description Align different batch peaks tables.
#' @author Xiaotao Shen
#' \email{shenxt1990@@163.com}
#' @param object A metflowClass object.
#' @param combine.mz.tol m/z tolerance for batch alignment, default is 25 ppm.
#' @param combine.rt.tol RT tolerance for batch alignment, default is 30 seconds.
#' @param use.int.tol Whether use intensity match for batch aglignment.
#' @return A new metflowClass object.
#' @export
align_batch = function(
object,
combine.mz.tol = 25,
combine.rt.tol = 30,
use.int.tol = FALSE
){
if (class(object) != "metflowClass") {
stop("Only for metflowClass object\n")
}
ms1_data <- object@ms1.data
if (length(ms1_data) == 1) {
return(object)
}
cat("Rough aligning...\n")
roughMatchResult <- roughAlign(
peak.table = ms1_data,
combine.mz.tol = combine.mz.tol,
combine.rt.tol = combine.rt.tol
)
cat("Accurate aligning...\n")
accurateMatchResult <-
accurateAlign(
peak.table = ms1_data,
simple.data = roughMatchResult,
use.int.tol = use.int.tol
)
object@ms1.data <- list(accurateMatchResult)
object@process.info$alignBatch <- list()
object@process.info$alignBatch$combine.mz.tol <-
combine.mz.tol
object@process.info$alignBatch$combine.rt.tol <-
combine.rt.tol
invisible(object)
}
#' @title alignBatch
#' @description Align different batch peaks tables.
#' @author Xiaotao Shen
#' \email{shenxt1990@@163.com}
#' @param object A metflowClass object.
#' @param combine.mz.tol m/z tolerance for batch alignment, default is 25 ppm.
#' @param combine.rt.tol RT tolerance for batch alignment, default is 30 seconds.
#' @param use.int.tol Whether use intensity match for batch aglignment.
#' @return A new metflowClass object.
#' @export
alignBatch = function(
object,
combine.mz.tol = 25,
combine.rt.tol = 30,
use.int.tol = FALSE
){
if(!silence.deprecated){
cat(crayon::yellow("`alignBatch()` is deprecated, please use `align_batch()`"))
}
if (class(object) != "metflowClass") {
stop("Only for metflowClass object\n")
}
ms1_data <- object@ms1.data
if (length(ms1_data) == 1) {
return(object)
}
cat("Rough aligning...\n")
roughMatchResult <- roughAlign(
peak.table = ms1_data,
combine.mz.tol = combine.mz.tol,
combine.rt.tol = combine.rt.tol
)
cat("Accurate aligning...\n")
accurateMatchResult <-
accurateAlign(
peak.table = ms1_data,
simple.data = roughMatchResult,
use.int.tol = use.int.tol
)
object@ms1.data <- list(accurateMatchResult)
object@process.info$alignBatch <- list()
object@process.info$alignBatch$combine.mz.tol <-
combine.mz.tol
object@process.info$alignBatch$combine.rt.tol <-
combine.rt.tol
invisible(object)
}
#' @title roughAlign
#' @description roughAlign
#' @author Xiaotao Shen
#' \email{shenxt1990@@163.com}
#' @param peak.table peak.table
#' @param combine.mz.tol combine.mz.tol
#' @param combine.rt.tol combine.rt.tol
#' @return result
roughAlign <- function(peak.table,
combine.mz.tol = 25,
combine.rt.tol = 30) {
if (length(peak.table) == 1)
return(peak.table[[1]])
batch1 <- peak.table[[1]]
batch2 <- peak.table[[2]]
###generate sinplifued datasets
simple.batch1 <- simplyData(
data = batch1,
combine.mz.tol = combine.mz.tol,
combine.rt.tol = combine.rt.tol
)
simple.batch2 <- simplyData(
data = batch2,
combine.mz.tol = combine.mz.tol,
combine.rt.tol = combine.rt.tol
)
rm(list = c("batch1", "batch2"))
### rough matching
data1 <- simple.batch1[, c(2:3)]
data2 <- simple.batch2[, c(2:3)]
match.result <- SXTMTmatch2(
data1 = as.matrix(data1),
data2 = as.matrix(data2),
mz.tol = combine.mz.tol,
rt.tol = combine.rt.tol,
rt.error.type = "abs"
)
rm(list = c("data1", "data2"))
simple.batch1 <- simple.batch1[match.result[, 1],]
simple.batch2 <- simple.batch2[match.result[, 2],]
rm("match.result")
simple.data <- list(simple.batch1, simple.batch2)
return(simple.data)
}
#' @title simplyData
#' @description simplyData
#' @author Xiaotao Shen
#' \email{shenxt1990@@163.com}
#' @param data data
#' @param combine.mz.tol combine.mz.tol
#' @param combine.rt.tol combine.rt.tol
#' @return result
simplyData <- function(data,
combine.mz.tol = 5,
combine.rt.tol = 30) {
data <- data[order(data$mz),]
name <- data$name
mz <- data$mz
rt <- data$rt
int <- apply(data[, -c(1:3)], 1, function(x)
mean(x, na.rm = TRUE))
names(mz) <- names(rt) <- names(int) <- name
#group peaks according to mz and RT
all.index <- 1:length(name)
remain.idx <- vector(mode = "list", length = length(name))
for (idx in 1:length(name)) {
if (all(idx != all.index))
next()
temp.mz <- mz[idx]
temp.rt <- rt[idx]
mz.left <- temp.mz - combine.mz.tol * temp.mz / 10 ^ 6
mz.right <- temp.mz + combine.mz.tol * temp.mz / 10 ^ 6
rt.left <- temp.rt - combine.rt.tol
rt.right <- temp.rt + combine.rt.tol
temp.idx <- which(mz > mz.left & mz <= mz.right &
rt > rt.left & rt <= rt.right)
if (length(temp.idx) == 1) {
remain.idx[[idx]] <- temp.idx
} else{
max.idx <- temp.idx[which.max(int[temp.idx])]
remain.idx[[idx]] <- max.idx
all.index <- setdiff(all.index, setdiff(temp.idx, max.idx))
}
}
remain.idx <- unique(unlist(remain.idx))
simple.data <- data[remain.idx,]
rm(list = c("data", "mz", "rt", "name", "int"))
return(simple.data)
}
#' @title baMZplot
#' @description baMZplot
#' @author Xiaotao Shen
#' \email{shenxt1990@@163.com}
#' @param simple.data data
#' @return result
baMZplot <- function(simple.data) {
my.theme <- ggplot2::theme_bw() +
ggplot2::theme(
axis.title.x = ggplot2::element_text(size = 18),
axis.title.y = ggplot2::element_text(size = 18)
) +
ggplot2::theme(
axis.text.x = ggplot2::element_text(size = 15),
axis.text.y = ggplot2::element_text(size = 15)
) +
ggplot2::theme(legend.title = ggplot2::element_text(size = 12)) +
ggplot2::theme(legend.text = ggplot2::element_text(size = 10))
mz.error <-
(simple.data[[2]]$mz - simple.data[[1]]$mz) * 10 ^ 6 / simple.data[[2]]$mz
mz1 <- simple.data[[1]]$mz
mz.error.sd <- sd(abs(mz.error))
mz.error.sd <-
paste("m/z error standard:", round(mz.error.sd, 2), "ppm")
temp.data <- data.frame(mz1, mz.error, stringsAsFactors = FALSE)
mz.plot <- ggplot2::ggplot(data = temp.data,
ggplot2::aes(x = mz1, y = mz.error)) +
ggplot2::geom_point() +
my.theme +
ggplot2::labs(x = "m/z (Batch 1)",
y = "m/z deviation (ppm)") +
ggplot2::ggtitle(paste("m/z vs. m/z deviation; ", mz.error.sd)) +
ggplot2::geom_hline(aes(yintercept = 0)) +
ggplot2::annotate(
geom = "text",
x = -Inf,
y = Inf,
hjust = -0.2,
vjust = 2,
label = mz.error.sd
)
return(mz.plot)
}
#' @title baRTplot
#' @description baRTplot
#' @author Xiaotao Shen
#' \email{shenxt1990@@163.com}
#' @param simple.data simple.data
#' @return result
baRTplot <- function(simple.data) {
my.theme <- ggplot2::theme_bw() +
ggplot2::theme(
axis.title.x = ggplot2::element_text(size = 18),
axis.title.y = ggplot2::element_text(size = 18)
) +
ggplot2::theme(
axis.text.x = ggplot2::element_text(size = 15),
axis.text.y = ggplot2::element_text(size = 15)
) +
ggplot2::theme(legend.title = ggplot2::element_text(size = 12)) +
ggplot2::theme(legend.text = ggplot2::element_text(size = 10))
rt.error <- simple.data[[2]]$rt - simple.data[[1]]$rt
rt1 <- simple.data[[1]]$rt
temp.data <- data.frame(rt1, rt.error, stringsAsFactors = FALSE)
rt.error.sd <- sd(abs(rt.error))
rt.error.sd <-
paste("RT error standard:", round(rt.error.sd, 2), "second")
rt.plot <- ggplot2::ggplot(data = temp.data,
ggplot2::aes(x = rt1, y = rt.error)) +
ggplot2::geom_point() +
my.theme +
ggplot2::labs(x = "Retention time (s, Batch 1)",
y = "RT deviation (second)") +
ggplot2::ggtitle(paste("RT vs. RT deviation;", rt.error.sd)) +
ggplot2::geom_hline(aes(yintercept = 0)) +
ggplot2::annotate(
geom = "text",
x = -Inf,
y = Inf,
hjust = -0.2,
vjust = 2,
label = rt.error.sd
)
return(rt.plot)
}
#' @title baINTplot
#' @description baINTplot
#' @author Xiaotao Shen
#' \email{shenxt1990@@163.com}
#' @param simple.data simple.data
#' @return result
baINTplot <- function(simple.data) {
my.theme <- ggplot2::theme_bw() +
ggplot2::theme(
axis.title.x = ggplot2::element_text(size = 18),
axis.title.y = ggplot2::element_text(size = 18)
) +
ggplot2::theme(
axis.text.x = ggplot2::element_text(size = 15),
axis.text.y = ggplot2::element_text(size = 15)
) +
ggplot2::theme(legend.title = ggplot2::element_text(size = 12)) +
ggplot2::theme(legend.text = ggplot2::element_text(size = 10))
int1 <-
log(apply(simple.data[[1]][, -c(1:3)], 1, function(x)
mean(x, na.rm = TRUE)) + 1, 10)
int2 <-
log(apply(simple.data[[2]][, -c(1:3)], 1, function(x)
mean(x, na.rm = TRUE)) + 1, 10)
int.error <- int2 - int1
int.error.sd <- sd(abs(int.error))
int.error.sd <-
paste("Log10int error standard:", round(int.error.sd, 2))
temp.data <- data.frame(int1, int.error, stringsAsFactors = FALSE)
int.plot <- ggplot2::ggplot(data = temp.data,
ggplot2::aes(x = int1, y = int.error)) +
ggplot2::geom_point() +
my.theme +
ggplot2::labs(x = "Log10intensity (mean, Batch 1)",
y = "Log10intensity deviation (second)") +
ggplot2::ggtitle(paste("Log10int vs. Log10int deviation;", int.error.sd)) +
ggplot2::geom_hline(aes(yintercept = 0)) +
ggplot2::annotate(
geom = "text",
x = -Inf,
y = Inf,
hjust = -0.2,
vjust = 2,
label = int.error.sd
)
return(int.plot)
}
#' @title peak.table
#' @description peak.table
#' @author Xiaotao Shen
#' \email{shenxt1990@@163.com}
#' @param peak.table peak.table
#' @param simple.data simple.data
#' @param use.int.tol use.int.tol
#' @return result
accurateAlign <- function(peak.table,
simple.data,
use.int.tol) {
##retrieve mz ,RT and int sd
if (length(peak.table) == 1)
return(peak.table[[1]])
mz.error <-
(simple.data[[2]]$mz - simple.data[[1]]$mz) * 10 ^ 6 / simple.data[[2]]$mz
mz.error.sd <- sd(abs(mz.error))
rt.error <- simple.data[[2]]$rt - simple.data[[1]]$rt
rt.error.sd <- sd(abs(rt.error))
int1 <-
log(apply(simple.data[[1]][, -c(1:3)], 1, function(x)
mean(x, na.rm = TRUE)) + 1, 10)
int2 <-
log(apply(simple.data[[2]][, -c(1:3)], 1, function(x)
mean(x, na.rm = TRUE)) + 1, 10)
int.error <- int2 - int1
int.error.sd <- sd(abs(int.error))
if (!use.int.tol) {
int.error.sd <- int.error.sd * 1000000
}
###begin alignment
ref.batch <- peak.table[[1]]
for (i in 2:length(peak.table)) {
cor.batch <- peak.table[[i]]
new.batch <- align2Batch(
batch1 = ref.batch,
batch2 = cor.batch,
mz.error.sd = mz.error.sd,
rt.error.sd = rt.error.sd,
int.error.sd = int.error.sd,
fold = 4,
mz.weight = 0.4,
rt.weight = 0.4,
int.weight = 0.2
)
ref.batch <- new.batch
rm("new.batch")
}
rm(list = c("peak.table"))
colnames(ref.batch)[1:3] <- c("name", "mz", "rt")
return(ref.batch)
}
#' @title align2Batch
#' @description peak.table
#' @author Xiaotao Shen
#' \email{shenxt1990@@163.com}
#' @param batch1 batch1
#' @param batch2 batch2
#' @param mz.error.sd mz.error.sd
#' @param rt.error.sd rt.error.sd
#' @param int.error.sd int.error.sd
#' @param fold fold
#' @param mz.weight mz.weight
#' @param rt.weight rt.weight
#' @param int.weight int.weight
#' @return result
align2Batch <- function(batch1,
batch2,
mz.error.sd,
rt.error.sd,
int.error.sd,
fold = 4,
mz.weight = 0.4,
rt.weight = 0.4,
int.weight = 0.2) {
data1 <- batch1[, c("mz", "rt")]
int1 <-
log(apply(batch1[, -c(1:3)], 1, function(x)
mean(x, na.rm = TRUE)) + 1, 10)
data1 <- data.frame(data1, int1, stringsAsFactors = FALSE)
colnames(data1)[3] <- "int"
rownames(data1) <- batch1$name
data2 <- batch2[, c("mz", "rt")]
int2 <-
log(apply(batch2[, -c(1:3)], 1, function(x)
mean(x, na.rm = TRUE)) + 1, 10)
data2 <- data.frame(data2, int2, stringsAsFactors = FALSE)
colnames(data2)[3] <- "int"
rownames(data2) <- batch2$name
##batch1 match batch2
match.result1 <- MRImatch(
data1 = data1,
data2 = data2,
mz.tol = mz.error.sd * fold,
rt.tol = rt.error.sd * fold,
rt.error.type = "abs",
int.tol = int.error.sd * fold
)
unique.index1 <- unique(match.result1[, 1])
remain.idx <- unlist(lapply(unique.index1, function(x) {
temp.idx <- which(x == match.result1[, 1])
if (length(temp.idx) == 1)
return(temp.idx)
temp.result <- match.result1[temp.idx,]
##score
temp.mz.error <- temp.result[, "mz.error"]
temp.rt.error <- temp.result[, "rt.error"]
temp.int.error <- temp.result[, "int.error"]
temp.mz.score <- sapply(temp.mz.error, function(x) {
matchScore(error = x, sd = mz.error.sd)
})
temp.rt.score <- sapply(temp.rt.error, function(x) {
matchScore(error = x, sd = rt.error.sd)
})
temp.int.score <- sapply(temp.int.error, function(x) {
matchScore(error = x, sd = int.error.sd)
})
temp.score <-
mz.weight * temp.mz.score + rt.weight * temp.rt.score + int.weight * temp.int.score
return(temp.idx[which.max(temp.score)])
}))
match.result1 <- match.result1[remain.idx,]
##batch2 match batch1
match.result2 <- MRImatch(
data1 = data2,
data2 = data1,
mz.tol = mz.error.sd * fold,
rt.tol = rt.error.sd * fold,
rt.error.type = "abs",
int.tol = int.error.sd * fold
)
unique.index1 <- unique(match.result2[, 1])
remain.idx <- unlist(lapply(unique.index1, function(x) {
temp.idx <- which(x == match.result2[, 1])
if (length(temp.idx) == 1)
return(temp.idx)
temp.result <- match.result2[temp.idx,]
##score
temp.mz.error <- temp.result[, "mz.error"]
temp.rt.error <- temp.result[, "rt.error"]
temp.int.error <- temp.result[, "int.error"]
temp.mz.score <- sapply(temp.mz.error, function(x) {
matchScore(error = x, sd = mz.error.sd)
})
temp.rt.score <- sapply(temp.rt.error, function(x) {
matchScore(error = x, sd = rt.error.sd)
})
temp.int.score <- sapply(temp.int.error, function(x) {
matchScore(error = x, sd = int.error.sd)
})
temp.score <-
mz.weight * temp.mz.score + rt.weight * temp.rt.score + int.weight * temp.int.score
return(temp.idx[which.max(temp.score)])
}))
match.result2 <- match.result2[remain.idx,]
name1 <- paste(match.result1[, 1], match.result1[, 2], sep = "_")
name2 <- paste(match.result2[, 2], match.result2[, 1], sep = "_")
intersect.name <- intersect(name1, name2)
temp.index <- which(name1 %in% intersect.name)
match.result <- match.result1[temp.index,]
##combine two batch data
batch1 <- batch1[match.result[, 1],]
batch2 <- batch2[match.result[, 2],]
##new name, mz and RT
new.mz <-
data.frame(batch1[, 2], batch2[, 2], stringsAsFactors = FALSE)
new.mz <- apply(new.mz, 1, mean)
new.rt <-
data.frame(batch1[, 3], batch2[, 3], stringsAsFactors = FALSE)
new.rt <- apply(new.rt, 1, mean)
new.name <-
paste("M", round(new.mz), "T", round(new.rt), sep = "")
new.name <- reName(new.name)
return.data <- data.frame(new.name, new.mz, new.rt,
batch1[, -c(1:3)], batch2[, -c(1:3)], stringsAsFactors = FALSE)
rownames(return.data) <- new.name
rm(
list = c(
"batch1",
"batch2",
"new.mz",
"new.rt",
"new.name",
"match.result",
"match.result1",
"match.result2"
)
)
return(return.data)
}
#' @title matchScore
#' @description matchScore
#' @author Xiaotao Shen
#' \email{shenxt1990@@163.com}
#' @param error error
#' @param sd sd
#' @return result
matchScore <- function(error, sd) {
(sd / error) ^ 2
}
#' @title reName
#' @description reName
#' @author Xiaotao Shen
#' \email{shenxt1990@@163.com}
#' @param name name
#' @return result
reName <- function(name) {
temp.name <- unique(name)
lapply(temp.name, function(x) {
temp.idx <- which(x == name)
if (length(temp.idx) > 1) {
paste(name[temp.idx], 1:length(temp.idx), sep = "_")
}
})
}
# reName <- function(name) {
# temp.name <- unique(name)
# for (i in 1:length(temp.name)) {
# temp.idx <- which(temp.name[i] == name)
# if (length(temp.idx) > 1) {
# name[temp.idx] <-
# paste(name[temp.idx], 1:length(temp.idx), sep = "_")
# }
# }
# name
# }
#' @title getBatchAlignmentInfo
#' @description getBatchAlignmentInfo
#' @author Xiaotao Shen
#' \email{shenxt1990@@163.com}
#' @param raw.data raw.data
#' @param rough.align.data rough.align.data
#' @param accurate.align.data accurate.align.data
#' @return result
getBatchAlignmentInfo <- function(raw.data,
rough.align.data,
accurate.align.data) {
if (length(raw.data) == 1)
return("Only one batch data.")
mz.error <-
(rough.align.data[[2]]$mz - rough.align.data[[1]]$mz) * 10 ^ 6 / rough.align.data[[2]]$mz
mz.error.sd <- sd(abs(mz.error))
rt.error <- rough.align.data[[2]]$rt - rough.align.data[[1]]$rt
rt.error.sd <- sd(abs(rt.error))
int1 <-
log(apply(rough.align.data[[1]][, -c(1:3)], 1, function(x)
mean(x, na.rm = TRUE)) + 1, 10)
int2 <-
log(apply(rough.align.data[[2]][, -c(1:3)], 1, function(x)
mean(x, na.rm = TRUE)) + 1, 10)
int.error <- int2 - int1
int.error.sd <- sd(abs(int.error))
parameter.info <-
paste(
"The standard for m/z, RT and log10intensity errors are",
round(mz.error.sd, 2),
",",
round(rt.error.sd, 2),
",",
'and',
round(int.error.sd, 2),
",respectively. So the tolerances for m/z, RT and log10intensity are",
4 * round(mz.error.sd, 2),
",",
4 * round(rt.error.sd, 2),
",",
'and',
4 * round(int.error.sd, 2),
",respectively."
)
peak.info <-
paste(
"There are ",
length(raw.data),
" batches. And the peak number are ",
paste(unlist(lapply(raw.data, nrow)), collapse = ","),
" respectively. ",
"After batch alignment, the peak number is ",
nrow(accurate.align.data),
".",
sep = ""
)
return(paste(parameter.info, peak.info))
}
#' @title MRImatch
#' @description MRImatch
#' @author Xiaotao Shen
#' \email{shenxt1990@@163.com}
#' @param data1 data1
#' @param data2 data2
#' @param mz.tol mz.tol
#' @param rt.tol rt.tol
#' @param rt.error.type rt.error.type
#' @param int.tol int.tol
#' @return result
MRImatch = function(data1,
data2,
mz.tol,
#rt.tol is relative
rt.tol = 30,
rt.error.type = c("relative", "abs"),
int.tol = 1){
rt.error.type <- match.arg(rt.error.type)
#
if (nrow(data1) == 0 | nrow(data2) == 0) {
result <- NULL
return(result)
}
# mz1 <- as.numeric(data1[, 1])
# rt1 <- as.numeric(data1[, 2])
info1 <- data1[, c(1, 2, 3)]
info1 <- apply(info1, 1, list)
mz2 <- as.numeric(data2[, 1])
rt2 <- as.numeric(data2[, 2])
int2 <- as.numeric(data2[, 3])
result <- pbapply::pblapply(info1, function(x) {
temp.mz1 <- x[[1]][[1]]
temp.rt1 <- x[[1]][[2]]
temp.int1 <- x[[1]][[3]]
mz.error <- abs(temp.mz1 - mz2) * 10 ^ 6 / temp.mz1
if (rt.error.type == "relative") {
rt.error <- abs(temp.rt1 - rt2) * 100 / temp.rt1
} else{
rt.error <- abs(temp.rt1 - rt2)
}
int.error <- abs(temp.int1 - int2)
j <-
which(mz.error <= mz.tol &
rt.error <= rt.tol & int.error <= int.tol)
if (length(j) == 0) {
matrix(NA, ncol = 10)
} else{
cbind(
j,
temp.mz1,
mz2[j],
mz.error[j],
temp.rt1,
rt2[j],
rt.error[j],
temp.int1,
int2[j],
int.error[j]
)
}
})
if (length(result) == 1) {
result <- cbind(1, result[[1]])
} else{
result <- mapply(function(x, y) {
list(cbind(x, y))
},
x <- 1:length(info1),
y = result)
result <- do.call(rbind, result)
}
result <-
matrix(result[which(!apply(result, 1, function(x)
any(is.na(x)))),], ncol = 11)
if (nrow(result) == 0)
return(NULL)
colnames(result) <-
c(
"Index1",
"Index2",
"mz1",
"mz2",
"mz.error",
"rt1",
"rt2",
"rt.error",
"int1",
"int2",
"int.error"
)
result <- result
}
#' @title SXTMTmatch2
#' @description SXTMTmatch2
#' @author Xiaotao Shen
#' \email{shenxt1990@@163.com}
#' @param data1 data1
#' @param data2 data2
#' @param mz.tol mz.tol
#' @param rt.tol rt.tol
#' @param rt.error.type rt.error.type
#' @return result
SXTMTmatch2 = function(data1,
data2,
mz.tol,
#rt.tol is relative
rt.tol = 30,
rt.error.type = c("relative", "abs")){
rt.error.type <- match.arg(rt.error.type)
#
if (nrow(data1) == 0 | nrow(data2) == 0) {
result <- NULL
return(result)
}
# mz1 <- as.numeric(data1[, 1])
# rt1 <- as.numeric(data1[, 2])
info1 <- data1[, c(1, 2)]
info1 <- apply(info1, 1, list)
mz2 <- as.numeric(data2[, 1])
rt2 <- as.numeric(data2[, 2])
result <- pbapply::pblapply(info1, function(x) {
temp.mz1 <- x[[1]][[1]]
temp.rt1 <- x[[1]][[2]]
mz.error <- abs(temp.mz1 - mz2) * 10 ^ 6 / temp.mz1
if (rt.error.type == "relative") {
rt.error <- abs(temp.rt1 - rt2) * 100 / temp.rt1
} else{
rt.error <- abs(temp.rt1 - rt2)
}
j <- which(mz.error <= mz.tol & rt.error <= rt.tol)
if (length(j) == 0) {
matrix(NA, ncol = 7)
} else{
cbind(j, temp.mz1, mz2[j], mz.error[j], temp.rt1, rt2[j], rt.error[j])
}
})
if (length(result) == 1) {
result <- cbind(1, result[[1]])
} else{
result <- mapply(function(x, y) {
list(cbind(x, y))
},
x <- 1:length(info1),
y = result)
result <- do.call(rbind, result)
}
result <-
matrix(result[which(!apply(result, 1, function(x)
any(is.na(x)))), ], ncol = 8)
if (nrow(result) == 0)
return(NULL)
colnames(result) <-
c("Index1",
"Index2",
"mz1",
"mz2",
"mz error",
"rt1",
"rt2",
"rt error")
result <- result
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.