#' Reliable change index
#'
#' The `rci()` function computes indices of reliable change (Wise, 2004)
#' and corresponding descriptive statistics.
#'
#' @inheritParams .inheritParams
#' @param rel Reliability of the measure, used to compute the standard error.
#' @param ci Width of confidence interval as a decimal. Default is `ci = 0.95`
#' applying a 95 percent confidence interval.
#' @param graph If set `TRUE`, a box plot of phase A and B scores is displayed.
#' `graph = FALSE` by default.
#' @author Juergen Wilbert
#' @references Christensen, L., & Mendoza, J. L. (1986). A method of assessing
#' change in a single subject: An alteration of the RC index. *Behavior
#' Therapy, 17*, 305-308.
#'
# #' Hageman, W. J. J., & Arrindell, W. A. (1993). A further refinement of the
# #' reliable change (RC) index by improving the pre-post difference score:
# #' Introducing RCID. *Behaviour Research and Therapy, 31*, 693-700.
#'
#' Jacobson, N. S., & Truax, P. (1991). Clinical Significance: A statistical
#' approach to defining meaningful change in psychotherapy research.
#' *Journal of Consulting and Clinical Psychology, 59*, 12-19.
#'
#' Wise, E. A. (2004). Methods for analyzing psychotherapy outcomes: A review
#' of clinical significance, reliable change, and recommendations for future
#' directions. *Journal of Personality Assessment, 82*, 50 - 59.
#'
#' @examples
#'
#' ## Report the RCIs of the first case from the byHeart data and include a graph
#' rci(byHeart2011[1], graph = TRUE, rel = 0.8)
#'
#' @export
rci <- function(data, dvar, pvar,
rel,
ci = 0.95,
graph = FALSE,
phases = c(1, 2)) {
check_args(
at_most(length(data), 1,
"RCI can not be applied to more than one case."),
within(rel, 0, 1),
within(ci, 0, 1),
is_logical(graph)
)
# set attributes to arguments else set to defaults of scdf
if (missing(dvar)) dvar <- dv(data) else dv(data) <- dvar
if (missing(pvar)) pvar <- phase(data) else phase(data) <- pvar
data <- .prepare_scdf(data, na.rm = TRUE)
data <- recombine_phases(data, phases = phases)$data
N <- length(data)
#if(N > 1) {
# stop("Multiple single-cases are given. Calculations can only be applied to one single-case data set.\n")
#}
A <- lapply(data, function(x) x[, dvar][x[, pvar] == "A"])
B <- lapply(data, function(x) x[, dvar][x[, pvar] == "B"])
A <- unlist(A)
B <- unlist(B)
sA <- sd(A, na.rm = TRUE)
sB <- sd(B, na.rm = TRUE)
mA <- mean(A, na.rm = TRUE)
mB <- mean(B, na.rm = TRUE)
nA <- sum(!is.na(A))
nB <- sum(!is.na(A))
n <- nA + nB
seA <- sA * sqrt(1 - rel)
seB <- sB * sqrt(1 - rel)
stand_dif <- (mB-mA)/sd(c(A,B))
se_dif <- sqrt(2*seA^2)
cor_a_b <- rel
xA <- mA
xB <- mB
rel_A <- rel
rel_B <- rel
rdd <- (sA^2*rel_A + sB^2*rel_B - 2*sA*sB*cor_a_b) /
(sA^2 + sB^2 - 2*sA*sB*cor_a_b)
rci_jacobsen <- (mB - mA) / seA
rci_christensen <- (mB - mA) / se_dif
rci_hageman <- (xB - xA) * rdd + (mB - mA) * (1 - rdd) /
sqrt(seA^2 + seB^2)
descriptives_ma <- matrix(
c(nA, nB, mA, mB, sA, sB, seA, seB), 2, 4,
dimnames = list(c("A-Phase", "B-Phase"), c("n", "mean", "SD", "SE"))
)
z <- qnorm(ci + 0.5 * (1 - ci))
ci_ma <- matrix(
NA, 2, 2, byrow = TRUE,
dimnames = list(c("A-Phase", "B-Phase"), c("Lower", "Upper"))
)
ci_ma[1,1] <- mA - z * seA
ci_ma[1,2] <- mA + z * seA
ci_ma[2,1] <- mB - z * seB
ci_ma[2,2] <- mB + z * seB
if(graph) {
dat <- cbind(ci_ma[1, ], ci_ma[2, ])
colnames(dat) <- c("A-Phase", "B-Phase")
main <- sprintf("%d%% confidence interval (rtt = %.2f)", ci * 100, rel)
boxplot(dat, ylab = "Mean", main = main)
}
rci_ma <- matrix(
c(rci_jacobsen, rci_christensen), 2, 1,
dimnames = list(
c(
"Jacobson et al.",
"Christensen and Mendoza"),
#"Hageman and Arrindell"),
"RCI"
)
)
out <- list(
rci = rci_ma,
stand_dif = stand_dif,
se_dif = se_dif,
conf = ci_ma,
conf_percent = ci,
reliability = rel,
descriptives = descriptives_ma,
rdd = rdd
)
class(out) <- c("sc_rci")
attr(out, opt("phase")) <- pvar
attr(out, opt("dv")) <- dvar
out
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.