R/GAPIT.ID.R

Defines functions `GAPIT.ID`

#' GAPIT.ID
#'
#' @description 
#' GAPIT.ID
#'
#' @param DP param a list (118 elements?)
#' @param IC param a list (9 elements?)
#' @param SS param a list (17 elements?)
#' @param RS param
#' @param cutOff param
#' @param DPP param
#' @param Create.indicator param
#' @param FDR.Rate param
#' @param QTN.position param
#' @param plot.style param
#' @param file.output param
#' @param SNP.MAF param
#' @param CG param
#' @param plot.bin param
#'
#'
#' @return 
#' An invisible NULL.
#'
#' @author Zhiwu Zhang and Jiabo Wang
#'
#' @export
`GAPIT.ID` <- function(
  DP=NULL,
  IC=NULL,
  SS=NULL,
  RS=NULL,
  cutOff=0.01,
  DPP=100000,
  Create.indicator=FALSE,
  FDR.Rate = 1,
  QTN.position=NULL,
  plot.style="Oceanic",
  file.output=TRUE,
  SNP.MAF=0,
  CG=NULL,
  testY=NULL,
  plot.bin=10^9 ){
#Object: To Interpretation and Diagnoses 
#Designed by Zhiwu Zhang
#Writen by Jiabo Wang
#Last update: Novenber 3, 2016
##############################################################################################
print("GAPIT.ID in process...")
#Define the funcitno here

if(is.null(DP)&is.null(IC))#inputdata is other method result
  {
    GWAS=RS
    GI=RS[,1:3]
    GI=GI[order(GI[,2]),]
    GI=GI[order(GI[,1]),]
    ps=RS[,4]
    nobs=nrow(RS)
    if(ncol(RS)>4)
      {
        maf=RS[,5]
        maf_pass=TRUE
      }
    if(ncol(RS)<5)
      {
        maf_pass=FALSE
        maf=0.5
      }
    rsquare_base=rep(NA,length(ps))
    rsquare=rep(NA,length(ps))
    df=rep(NA,length(nobs))
    tvalue=rep(NA,length(nobs))
    stderr=rep(NA,length(nobs))
    effect.est=rep(NA,length(nobs))
    if(is.na(maf[1]))  maf=matrix(.5,nrow(GWAS),1)
    # print("Filtering SNPs with MAF..." )
    index=maf>=SNP.MAF
    PWI.Filtered=cbind(GI,ps,maf,nobs,rsquare_base,rsquare)#[index,]
    colnames(PWI.Filtered)=c("SNP","Chromosome","Position ","P.value", "maf", "nobs", "Rsquare.of.Model.without.SNP","Rsquare.of.Model.with.SNP")
    if(!is.null(PWI.Filtered))
      {
        print("Calculating FDR..." )
        PWIP <- GAPIT.Perform.BH.FDR.Multiple.Correction.Procedure(PWI = PWI.Filtered, FDR.Rate = FDR.Rate, FDR.Procedure = "BH")
        if(file.output) 
          {
            print("QQ plot..." )
            GAPIT.QQ(P.values = ps, name.of.trait = name.of.trait,DPP=DPP)
            print("Manhattan plot (Genomewise)..." )
            GAPIT.Manhattan(GI.MP = cbind(GI[,-1],ps), name.of.trait = name.of.trait, DPP=DPP, plot.type = "Genomewise",cutOff=DP$cutOff,seqQTN=QTN.position,plot.style=plot.style,plot.bin=plot.bin)
            print("Manhattan plot (Chromosomewise)..." )
            GAPIT.Manhattan(GI.MP = cbind(GI[,-1],ps), name.of.trait = name.of.trait, DPP=DPP, plot.type = "Chromosomewise",cutOff=DP$cutOff,plot.bin=plot.bin)
          }
  #Association Table
        print("Association table..." )
        print("Joining tvalue and stderr" )
        DTS=cbind(GI,df,tvalue,stderr,effect.est)
        colnames(DTS)=c("SNP","Chromosome","Position","DF","t Value","std Error","effect")	
        print("Creating ROC table and plot" )

        if(file.output)
          {
            if( !is.null(DP) )ys <- nrow(DP$G)
            myROC=GAPIT.ROC(t=tvalue,se=stderr,Vp=stats::var(ys),trait=name.of.trait)
          }
        print("ROC table and plot created" )
        print("MAF plot..." )
        if(file.output&maf_pass) myMAF1=GAPIT.MAF(MAF=maf,P=ps,E=NULL,trait=name.of.trait)
        if(file.output)
          {
            utils::write.table(GWAS, paste("GAPIT.Association.GWAS_Results.", name.of.trait, ".csv", sep = ""), quote = FALSE, sep = ",", row.names = FALSE,col.names = TRUE)
            utils::write.table(DTS, paste("GAPIT.Association.Df_tValue_StdErr.", name.of.trait, ".csv", sep = ""), quote = FALSE, sep = ",", row.names = FALSE,col.names = TRUE)
          }#end file.output
      }#end !is.null(PWI.Filtered)
  }else{ #inputdata from GAPIT3 result
    cutOff=DP$cutOff
    DPP=DP$DPP
    Create.indicator=DP$Create.indicator
    FDR.Rate = DP$FDR.Rate
    QTN.position=DP$QTN.position
    plot.style=DP$plot.style
    file.output=DP$file.output
    SNP.MAF=DP$SNP.MAP
    CG=DP$CG
    plot.bin=DP$plot.bin
    name.of.trait=DP$name.of.trait
    GWAS=SS$GWAS
    GVs=SS$GVs
    Pred=SS$Pred
# print(head(GWAS))
    GI=GWAS
    GI=GI[order(GI[,3]),]
    GI=GI[order(GI[,2]),]
    byPass=TRUE
    if(DP$kinship.algorithm%in%c("FarmCPU","MLMM","BLINK","BLINKC"))byPass=FALSE
    if(byPass) 
    {
 # print(head(SS$GWAS))
      ps=SS$TV$ps
      nobs=SS$TV$nobs
      maf=GWAS$maf
  #maf=SS$TV$maf
      rsquare_base=SS$TV$rsquare_base
      rsquare=SS$TV$rsquare
      df=SS$TV$df
      tvalue=SS$TV$tvalue
      stderr=SS$TV$stderr
      effect.est=SS$mc
      effect=SS$mc
      #GI=cbind(GI,effect)   
      if(DP$file.output & !is.null(SS$Compression) & !is.na(SS$Compression[1,6]))
      {
         GAPIT.Compression.Visualization(Compression = SS$Compression, 
                                     name.of.trait = DP$name.of.trait,
                                     file.output = DP$file.output)
      }  
    }else{
      maf=GI$maf
      ps=GI$P.value
      nobs=GI$nobs
      rsquare_base=rep(NA,length(ps))
      rsquare=rep(NA,length(ps))
      df=rep(NA,length(ps))
      tvalue=rep(NA,length(ps))
      stderr=rep(NA,length(ps))
      effect.est=GI$effect
    }
    # if(is.na(maf[1]))  maf=matrix(.5,nrow(GI),1)
    if(!is.null(IC$GD)&DP$SNP.test)
    {  
      print("Filtering SNPs with MAF..." )
      PWI.Filtered=cbind(GWAS[,1:6],rsquare_base,rsquare)
      colnames(PWI.Filtered)=c("SNP","Chr","Pos","P.value", "maf", "nobs", "Rsquare.of.Model.without.SNP","Rsquare.of.Model.with.SNP")
  #Run the BH multiple correction procedure of the results
  #Create PWIP, which is a table of SNP Names, Chromosome, bp Position, Raw P-values, FDR Adjusted P-values
      print("Calculating FDR..." )
      PWIP <- GAPIT.Perform.BH.FDR.Multiple.Correction.Procedure(PWI = PWI.Filtered, FDR.Rate = FDR.Rate, FDR.Procedure = "BH")
  # print(str(PWIP)) 

      GWAS=merge(GWAS[,c(1:6,ncol(GWAS))],PWIP$PWIP[,c(1,9)],by.x=colnames(GWAS)[1],by.y=colnames(PWIP$PWIP)[1])  
      # print(head(GWAS))
      GWAS=GWAS[,c(1:6,8,7)]
      GWAS=GWAS[order(as.numeric(GWAS[,3])),]
      GWAS=GWAS[order(as.numeric(GWAS[,2])),]
      colnames(GWAS)=c("SNP","Chr","Pos","P.value", "MAF", "nobs", "H&B.P.Value","Effect")
      # print(head(GWAS))

      if(DP$file.output)
      {
        print("QQ plot..." )      
        GAPIT.QQ(P.values = GWAS[,4], name.of.trait = DP$name.of.trait,DPP=DP$DPP)
        print("Manhattan plot (Genomewise)..." )
        GAPIT.Manhattan(GI.MP = GWAS[,2:4], name.of.trait = DP$name.of.trait, DPP=DP$DPP, plot.type = "Genomewise",cutOff=DP$cutOff,seqQTN=DP$QTN.position,plot.style=DP$plot.style,plot.bin=DP$plot.bin,chor_taxa=DP$chor_taxa)
        print("Manhattan plot (Chromosomewise)..." )
        GAPIT.Manhattan(GI.MP = GWAS[,2:4],GD=IC$GD[,-1], CG=DP$CG,name.of.trait = DP$name.of.trait, DPP=DP$DPP, plot.type = "Chromosomewise",cutOff=DP$cutOff,plot.bin=DP$plot.bin)
        
        print("Association table..." )
        print("Joining tvalue and stderr" )
        if(all.equal(as.character(DP$chor_taxa),as.character(unique(sort(as.numeric(as.matrix(GWAS[,2]))))))!=TRUE)
        { 
          chro=as.numeric(as.matrix(GWAS[,2]))
          chor_char=unique(DP$chor_taxa)
     # print(chro)
     # print(chor_char)
          for(i in 1:length(unique(chro)))
          {
             chro[chro==i]=chor_char[i]
          }
          GWAS[,2]=chro
        }
        utils::write.table(GWAS, paste("GAPIT.Association.GWAS_Results.", DP$name.of.trait, ".csv", sep = ""), quote = FALSE, sep = ",", row.names = FALSE,col.names = TRUE)
        DTS=cbind(GWAS[,1:3],df,tvalue,stderr,GWAS[,ncol(GWAS)])
        colnames(DTS)=c("SNP","Chromosome","Position","DF","t Value","std Error","effect")  
        utils::write.table(DTS, paste("GAPIT.Association.GWAS_StdErr.", DP$name.of.trait, ".csv", sep = ""), quote = FALSE, sep = ",", row.names = FALSE,col.names = TRUE)
        GAPIT.Phenotype.afterGWAS(GWAS=GWAS,GD=DP$GD,GM=DP$GM,Y=DP$Y,G=DP$G,model=DP$model,cutOff=DP$cutOff)

        if(DP$Inter.Plot)
        {
          if(ncol(GI)>1)
          {
            new_GI=merge(PWIP$PWIP,GI[,c("SNP","effect")],by.x="SNP",by.y="SNP")
          }else{
            new_GI=GI
          }
          new_GI=new_GI[order(new_GI[,4]),]
          if(all.equal(as.character(DP$chor_taxa),as.character(sort(unique(as.numeric(as.matrix(new_GI[,2]))))))!=TRUE)
          {
     # print("@@@")
            chro=as.numeric(as.matrix(new_GI[,2]))
            chor_char=unique(DP$chor_taxa)

            for(i in 1:length(unique(chro)))
            {
               chro[chro==i]=chor_char[i]
            }
            new_GI[,2]=chro
          }
          print("GAPIT.Interactive.Manhattan")
          GAPIT.Interactive.Manhattan(GWAS=new_GI,X_fre=maf,plot.type=DP$Inter.type,name.of.trait = DP$name.of.trait)
        } #end DP$Inter.Plot
      }#end file.output
    }#end IC$GD)
  print("GAPIT.ID accomplished successfully for multiple traits. Results are saved")
  return(invisible(NULL))
  }#is.null(DP)&is.null(IC)

}  #end of GAPIT.ID function
#=============================================================================================
jiabowang/GAPIT3 documentation built on March 6, 2025, 2:21 a.m.