#' Get axis label for minorLogTicks
#'
#' Get axis label for minorLogTicks
#'
#' This function is intended to be called internally by
#' `jamba::minorLogTicks()`.
#'
#' @returns `character` or `expression` axis label as appropriate.
#'
#' @param i `numeric` axis value
#' @param asValues `logical` indicating whether the value should be
#' evaluated.
#' @param logAxisType `character` string with the type of axis values:
#' * `"normal"`: axis values as-is.
#' * `"flip"`: inverted axis values, for example where negative values
#' should be displayed as negative log-transformed values.
#' * `"pvalue"`: for values transformed as `-log10(pvalue)`
#' @param logBase `numeric` logarithmic base
#' @param base_limit `numeric` value indicating the minimum value that
#' should be written as an exponential.
#' @param offset `numeric` value of offset used for log transformation.
#' @param symmetricZero `logical` indicating whether negative values
#' should be displayed as negative log-transformed values.
#' @param ... additional arguments are ignored.
#'
#' @family jam practical functions
#'
#' @examples
#' x <- log10(c(1, 2, 5, 10, 20, 50, 100, 200, 500))
#' getAxisLabel(x, asValues=TRUE, logBase=10)
#'
#' x1exp <- c(1, 2, 3, 4, 5)
#' plot(1:6, main="exponential values")
#' for (i in seq_along(x1exp)) {
#' text(x=i, y=i + 0.2,
#' getAxisLabel(x1exp[i], asValues=FALSE, logBase=10))
#' }
#'
#' x1exp <- c(-3:3)
#' plot(-3:3, main="log2 fold change values")
#' for (i in seq_along(x1exp)) {
#' text(x=i, y=i + 0.3 - 4,
#' getAxisLabel(x1exp[i],
#' logAxisType="flip",
#' asValues=TRUE, logBase=2))
#' }
#'
#' x1exp <- c(1, 2, 3, 4, 5)
#' plot(1:6, main="P-value style")
#' for (i in seq_along(x1exp)) {
#' text(x=i, y=i + 0.2,
#' getAxisLabel(x1exp[i],
#' logAxisType="pvalue", asValues=FALSE, logBase=10))
#' }
#'
#' @export
getAxisLabel <- function
(i,
asValues,
logAxisType=c("normal",
"flip",
"pvalue"),
logBase,
base_limit=2,
offset=0,
symmetricZero=(offset > 0),
...)
{
## This function takes an axis coordinate and transforms into the
## corresponding label. Note that it does NOT apply offset,
## since this function serves a specific purpose within the
## minorLogTicks() parent function.
logAxisType <- match.arg(logAxisType);
if (asValues) {
if (igrepHas("flip", logAxisType)) {
#iX <- (logBase^abs(i) - offset) * ifelse(sign(i)<0,-1,1);
iX <- (logBase^abs(i)) * ifelse(i < 0, -1, 1);
} else if (offset > 0 || symmetricZero) {
iX <- (logBase^abs(i)) * ifelse(i < 0, -1, 1);
} else {
iX <- logBase^i;
}
} else {
if (length(logAxisType) > 0 && igrepHas("pvalue", logAxisType)) {
iSign <- sign(i);
if (iSign > 0) {
iBase <- floor(i);
iExtra <- abs(i) %% 1;
if (iExtra > 0) {
## Handle 2x10^-3
i <- -1 * abs(iBase) - 1;
iExtra <- 11 - signif(10^(iExtra), digits=2);
if (i == 0) {
## Print the straight label
iX <- as.expression(bquote(.(iExtra)));
} else if (abs(i) <= base_limit) {
## Print the label without exponent
iVal <- iExtra * 10^i;
iX <- as.expression(bquote(.(iVal)));
} else {
xsep <- "x";
iX <- as.expression(bquote(.(iExtra) * .(xsep) * 10^ .(i)));
}
} else {
i <- -1 * abs(i);
if (i == 0) {
iVal <- 1;
iX <- as.expression(bquote(.(iVal)));
} else if (abs(i) <= base_limit) {
## Print the label without exponent
iVal <- 10^i;
iX <- as.expression(bquote(.(iVal)));
} else {
iX <- as.expression(bquote(10^ .(i)));
}
}
} else {
iX <- as.expression(bquote(-10^ .(i)));
}
} else {
if (logBase == 2) {
iX <- as.expression(bquote(2^ .(i)));
} else if (logBase == 10) {
iX <- as.expression(bquote(10^ .(i)));
} else {
iX <- as.expression(bquote(.(exp(1))^ .(i)));
}
}
}
iX;
}
#' Display major and minor tick marks for log-scale axis
#'
#' Display major and minor tick marks for log-scale axis,
#' with optional offset for proper labeling of `log2(1+x)`
#' with numeric offset.
#'
#' This function displays log units on the axis of an
#' existing base R plot. It calls `jamba::minorLogTicks()` which
#' calculates appropriate tick and label positions.
#'
#' Note: This function assumes the axis values have already been
#' log-transformed. Make sure to adjust the `offset` to reflect
#' the method of log-transformation, for example:
#'
#' * `log2(1+x)` would require `logBase=2` and `offset=1` in order
#' to represent values properly at or near zero.
#' * `log(0.5+x)` would require `logBase=exp(1)` and `offset=0.5`.
#' * `log10(x)` would require `logBase=10` and `offset=0`.
#'
#' The defaults `logBase=2` and `displayBase=10` assume data
#' has been log2-transformed, and displays tick marks using the
#' common base of 10. To display tick marks at two-fold intervals,
#' use `displayBase=2`.
#'
#' This function was motivated in order to label log-transformed
#' data properly in some special cases, like using `log2(1+x)`
#' where the resulting values are shifted "off by one" using
#' standard log-scaled axis tick marks and labels.
#'
#' For log fold changes, set `symmetricZero=TRUE`, which will
#' create negative log scaled fold change values as needed for
#' negative values. For example, this option would label a
#' `logBase=2` value of `-2` as `-4` and not as `0.25`.
#'
#' Note that by default, whenever `offset > 0` the argument
#' `symmetricZero=TRUE` is also defined, since a negative value in
#' that scenario has little meaning. This behavior can be turned
#' off by setting `symmetricZero=FALSE`.
#'
#' @returns `list` with vectors:
#' * `majorLabels`: `character` vector of major axis labels
#' * `majorTicks`: `numeric` vector of major axis tick positions
#' * `minorLabels`: `character` vector of minor axis labels
#' * `minorTicks`: `numeric` vector of minor axis tick positions
#' * `allLabelsDF`: `data.frame` containing all axis tick
#' positions and corresponding labels.
#'
#' @family jam plot functions
#'
#' @param side `integer` indicating the axis side, 1=bottom, 2=left,
#' 3=top, 4=right.
#' @param lims NULL or `numeric` range for which the axis tick marks
#' will be determined.
#' If NULL then the corresponding `graphics::par("usr")`
#' will be used.
#' @param logBase `numeric` value indicating the log base units, which
#' will be used similar to how `base` is used in `log(x, base)`.
#' @param displayBase `numeric` value indicating the log base units to
#' use when determining the numeric label position. For example,
#' data may be log2 scaled, and yet it is visually intuitive to
#' show log transformed axis units in base 10 units. See examples.
#' @param offset `numeric` offset used in transforming the
#' numeric data displayed on this axis. For example, a common
#' technique is to transform data using `log2(1+x)` which adds
#' `1` to values prior to the log2 transformation. In this case,
#' `offset=1`, which ensures the axis labels exactly
#' match the initial numeric value prior to the log2 transform.
#' @param symmetricZero `logical` indicating whether numeric values
#' are symmetric around zero. For example, log fold changes should
#' use `symmetricZero=TRUE` which ensures a log2 value of `-2` is
#' labeled `-4` to indicate a negative four fold change. If
#' `symmetricZero=FALSE` a log2 value of `-2` would be labeled
#' `0.0625`.
#' @param padj `numeric` vector length 2, which is used to position
#' axis labels for the minor and major labels, respectively. For
#' example, `padj=c(0,1)` will position minor labels just to the
#' left of the tick marks, and major labels just to the right
#' of tick marks. This example is helpful when minor labels bunch
#' up on the right side of each section.
#' @param doFormat `logical` indicating whether to apply `base::format()` to
#' format numeric labels.
#' @param big.mark,scipen arguments passed to `base::format()` when
#' `doFormat=TRUE`.
#' @param minorWhich `integer` vector indicating which of the minor tick
#' marks should be labeled. Labels are generally numbered from `2`
#' to `displayBase-1`. So by default, log 10 units would add
#' minor tick marks and labels to the `c(2,5)` position. For log2
#' units only, the second label is defined at 1.5, which shows
#' minor labels at `c(3, 6, 12)`, which are `1.5 * c(2, 4, 8)`.
#' @param minorLogTicksData `list` object created by running
#' `jamba::minorLogTicks()`, which allows inspecting and modifying
#' the content for custom control.
#' @param majorCex,minorCex `numeric` base text size factors, relative
#' to cex=1 for default text size. These factors are applied in
#' addition to existing `graphics::par("cex")` values, preserving any
#' global text size defined there.
#' @param doMajor,doLabels,doMinorLabels `logical`, default TRUE, to display
#' each type of label. Major labels appear at log base positions,
#' minor labels appear as intermediate values.
#' @param asValues `logical`, default TRUE, whether to print the
#' exponentiated value, otherwise FALSE will print the log value.
#' @param logStep `integer` the number of log units per "step", typically `1`.
#' @param cex,col,col.ticks,las parameters used for axis label size,
#' axis label colors,
#' axis tick mark colors, and label text orientation, respectively.
#' @param verbose `logical` indicating whether to print verbose output.
#' @param ... Additional arguments are ignored.
#'
#' @examples
#' plotPolygonDensity(0:100, breaks=100);
#'
#' plotPolygonDensity(0:100, breaks=100, log="x",
#' main="plotPolygonDensity() uses minorLogTicksAxis()",
#' xlab="x (log-scaled)");
#'
#' plotPolygonDensity(log2(1+0:100), breaks=100,
#' main="manually called minorLogTicksAxis(logBase=2)",
#' xaxt="n",
#' xlab="x (log-scaled)");
#' minorLogTicksAxis(1, offset=1, logBase=2);
#'
#' plotPolygonDensity(log10(1+0:100), breaks=100,
#' main="manually called minorLogTicksAxis(logBase=10)",
#' xaxt="n",
#' xlab="x (log-scaled)");
#' minorLogTicksAxis(1, offset=1, logBase=10);
#'
#' plotPolygonDensity(log10(1+0:100), breaks=100,
#' main="using 'minorWhich=2:9'",
#' xaxt="n",
#' xlab="x (log-scaled)");
#' minorLogTicksAxis(1, offset=1, logBase=10,
#' minorWhich=2:9);
#'
#' @export
minorLogTicksAxis <- function
(side=NULL,
lims=NULL,
logBase=2,
displayBase=10,
offset=0,
symmetricZero=(offset > 0),
majorCex=1,
minorCex=0.65,
doMajor=TRUE,
doLabels=TRUE,
doMinorLabels=TRUE,
asValues=TRUE,
padj=NULL,
doFormat=TRUE,
big.mark=",",
scipen=10,
minorWhich=c(2,5),
logStep=1,
cex=1,
las=2,
col="black",
col.ticks=col,
minorLogTicksData=NULL,
verbose=FALSE,
...)
{
## padj can take two values, for the minor and major ticks, respectively,
## and is recycled if too short.
##
## padj <- c(0,1) will align minor tick labels just to the left
## of the ticks, and major labels just to the right,
## since log-scaled labels tend to bunch up on the left side
## of each major label.
##
## To define a set of minor tick positions, send a list object
## minorLogTicksData with (majorTicks, majorLabels, minorTicks, minorLabels)
if (is.null(padj)) {
if (side %in% c(1, 3)) {
padj <- c(0.3,0.7);
} else {
padj <- c(0.7,0.3);
}
} else {
padj <- rep(padj, length.out=2);
}
if (!is.null(minorLogTicksData)) {
mlt <- minorLogTicksData;
} else {
mlt <- minorLogTicks(side=side,
lims=lims,
logBase=logBase,
displayBase=displayBase,
offset=offset,
symmetricZero=symmetricZero,
minorWhich=minorWhich,
logStep=logStep,
asValues=asValues,
verbose=verbose,
...);
}
majorTicks <- mlt$majorTicks;
majorLabels <- mlt$majorLabels;
minorTicks <- mlt$minorTicks;
minorLabels <- mlt$minorLabels;
## Optionally format numbers, mostly to add commas per thousands place
NAmajor <- is.na(majorLabels);
NAminor <- is.na(minorLabels);
if (doFormat) {
if (verbose) {
printDebug("minorLogTicksAxis(): ",
"Formatting numerical labels.");
}
if (is.numeric(scipen)) {
scipenO <- getOption("scipen");
options("scipen"=scipen);
}
majorLabels <- sapply(majorLabels,
format,
big.mark=big.mark,
trim=TRUE,
...);
minorLabels <- sapply(minorLabels,
format,
big.mark=big.mark,
trim=TRUE,
...);
if (is.numeric(scipen)) {
options("scipen"=scipenO);
}
}
if (any(NAmajor)) {
majorLabels[NAmajor] <- "";
}
if (any(NAminor)) {
minorLabels[NAminor] <- "";
}
## By default display the major tick labels
if (doMajor && length(majorTicks) > 0) {
if (!doLabels) {
majorLabels <- FALSE;
}
graphics::axis(side,
at=majorTicks,
tcl=graphics::par("tcl")*majorCex*cex,
labels=majorLabels,
padj=padj[2],
cex.axis=majorCex*cex,
col="transparent",
col.ticks=col.ticks,
las=las,
...);
}
if (!doMinorLabels) {
minorLabels <- FALSE;
}
graphics::axis(side,
at=minorTicks,
tcl=graphics::par("tcl")*minorCex*cex,
labels=minorLabels,
padj=padj[1],
cex.axis=minorCex*cex,
col="transparent",
col.ticks=col.ticks,
las=las,
...);
graphics::axis(side,
at=range(c(majorTicks, minorTicks)),
labels=FALSE,
col=col,
col.ticks="transparent",
...);
invisible(mlt);
}
#' Calculate major and minor tick marks for log-scale axis
#'
#' Calculate major and minor tick marks for log-scale axis
#'
#' This function calculates log units for the axis of an
#' existing base R plot. It
#' calculates appropriate tick and label positions for major
#' steps, which are typically in log steps; and minor steps, whic
#' are typically a subset of steps at one lower log order.
#' For example, log 10 steps would be: `c(1, 10, 100, 1000)`,
#' and minor steps would be `c(2, 5, 20, 50, 200, 500, 2000, 5000)`.
#'
#' This function was motivated in order to label log-transformed
#' data properly in some special cases, like using `log2(1+x)`
#' where the resulting values are shifted "off by one" using
#' standard log-scaled axis tick marks and labels.
#'
#' Also, when using log fold change values, this function
#' creates axis labels which indicate negative fold change
#' values, for example `-2` in log2 fold change units would
#' be labeled with fold change `-4`, and not `0.0625` which
#' represents a fractional value.
#'
#' Use the argument `symmetricZero=TRUE` when using directional
#' log fold change values.
#'
#' @returns `list` of axis tick positions, and corresponding labels,
#' for major and minor ticks.
#' Major ticks are defined as one tick per log unit
#' exponentiated. For example, 1, 10, 100, 1000 when `displayBase=10`.
#'
#' @family jam practical functions
#'
#' @examples
#' ## This example shows how to draw axis labels manually,
#' ## but the function minorLogTicksAxis() is easier to use.
#' xlim <- c(0,4);
#' nullPlot(xlim=xlim, doMargins=FALSE);
#' mlt <- minorLogTicks(1,
#' logBase=10,
#' offset=1,
#' minTick=0);
#' maj <- subset(mlt$allLabelsDF, type %in% "major");
#' graphics::axis(1, las=2,
#' at=maj$tick, label=maj$text);
#' min <- subset(mlt$allLabelsDF, type %in% "minor");
#' graphics::axis(1, las=2, cex.axis=0.7,
#' at=min$tick, label=min$text,
#' col="blue");
#' graphics::text(x=log10(1+c(0,5,50,1000)), y=rep(1.7, 4),
#' label=c(0,5,50,1000), srt=90);
#'
#' nullPlot(xlim=c(-4,10), doMargins=FALSE);
#' graphics::axis(3, las=2);
#' minorLogTicksAxis(1, logBase=2, displayBase=10, symmetricZero=TRUE);
#'
#' nullPlot(xlim=c(-4,10), doMargins=FALSE);
#' graphics::axis(3, las=2);
#' minorLogTicksAxis(1, logBase=2, displayBase=10, offset=1);
#' x2 <- stats::rnorm(1000) * 40;
#' d2 <- stats::density(log2(1+abs(x2)) * ifelse(x2<0, -1, 1));
#' lines(x=d2$x, y=normScale(d2$y)+1, col="green4");
#'
#' nullPlot(xlim=c(0,10), doMargins=FALSE);
#' graphics::axis(3, las=2);
#' minorLogTicksAxis(1, logBase=2, displayBase=10, offset=1);
#' x1 <- c(0, 5, 15, 200);
#' graphics::text(y=rep(1.0, 4), x=log2(1+x1), label=x1, srt=90, adj=c(0,0.5));
#' graphics::points(y=rep(0.95, 4), x=log2(1+x1), pch=20, cex=2, col="blue");
#'
#' @param side `integer` value indicating which axis to produce tick
#' marks, 1=bottom, 2=left, 3=top, 4=right.
#' @param lims `numeric` vector length=2, indicating specific numeric
#' range to use for tick marks.
#' @param logBase `numeric` value indicating the logarithmic base, assumed
#' to be applied to the numeric `lims` limits, or the axis range,
#' previously.
#' @param displayBase `numeric` value indicating the base used to position
#' axis labels, typically `displayBase=10` is used to draw labels
#' at typical positions.
#' @param logStep `integer` value indicating the number of log steps
#' between major axis label positions. Typically `logStep=1` will
#' draw a label every log position based upon `displayBase`, for
#' example `displayBase=10` and `logStep=1` will use `c(1,10,100,1000)`;
#' and `displayBase=10` and `logStep=2` would use `c(1,100,10000)`.
#' @param minorWhich `integer` vector of values to label, where those
#' integer values are between 1 and `displayBase`, for example
#' `displayBase=10` may label only `c(2,5)`, which implies minor
#' tick labels at `c(2, 5, 20, 50, 200, 500)`. Any minor labels
#' which would otherwise equal a major tick position are removed.
#' By default, when `displayBase=2`, `minorWhich=c(1.5)` which has the
#' effect of drawing one minor label between each two-fold
#' major tick label.
#' @param asValues `logical` indicating whether to create exponentiated
#' numeric labels. When `asValues=FALSE`, it creates `expression` objects
#' which include the exponential value. Use `asValues=FALSE` and
#' `logAxisType="pvalue"` to draw P-value labels.
#' @param offset `numeric` value added during log transformation, typically
#' of the form `log(1 + x)` where `offset=1`. The offset is used to
#' determine the accurate numeric label such that values of `0` are
#' properly labeled by the original numeric value.
#' @param symmetricZero `logical` indicating whether numeric values
#' are symmetric around zero. For example, log fold changes should
#' use `symmetricZero=TRUE` which ensures a log2 value of `-2` is
#' labeled `-4` to indicate a negative four fold change. If
#' `symmetricZero=FALSE` a log2 value of `-2` would be labeled
#' `0.0625`.
#' @param col,col.ticks `character` color used for the axis label, and
#' axis tick marks, respectively, default "black".
#' @param combine `logical`, default FALSE, whether to combine major and
#' minor ticks into one continuous set of major tick marks.
#' @param logAxisType `character` string indicating the type of log axis:
#' * normal: typical axis style and orientation
#' * flipped: used for reverse orientation
#' * pvalue: used for `-log10(pvalue)` orientation.
#' @param verbose logical indicating whether to print verbose output.
#' @param ... additional parameters are ignored.
#'
#' @export
minorLogTicks <- function
(side=NULL,
lims=NULL,
logBase=2,
displayBase=10,
logStep=1,
minorWhich=c(2,5),
asValues=TRUE,
offset=0,
symmetricZero=(offset>0),
col="black",
col.ticks=col,
combine=FALSE,
logAxisType=c("normal", "flipped", "pvalue"),
verbose=FALSE,
...)
{
## Returns a list of majorTicks, minorTicks, majorLabels, and minorLabels.
##
## logAxisType="flipped" will flip negative values so they are like fold changes, e.g.
## "-1" will become "-10" instead of "0.1"
##
if (length(offset) == 0) {
offset <- 0;
}
offset <- head(offset, 1);
displayBase <- head(displayBase, 1);
logBase <- head(logBase, 1);
if (logStep > 1) {
minorWhich <- c(1);
}
if (length(lims) == 0) {
if (length(side) == 0) {
stop("minorLogTicks requires either axis (which axis), or lims (range of values) to be defined.");
}
lims <- graphics::par("usr");
if(side %in% c(1,3)) {
lims <- lims[1:2];
} else {
lims <- lims[3:4];
}
} else {
lims <- range(lims);
}
logAxisType <- match.arg(logAxisType);
## Now set the floor and raise the roof to the nearest integer at or
## just beyond the given range of values.
lims <- c(floor(lims[1]), ceiling(lims[2]));
if (verbose) {
printDebug("minorLogTicks(): ",
"lims:",
format(lims, digits=3, scientific=FALSE, trim=TRUE));
}
## Define integer sequence of steps
## Define the intended labels based upon integer sequence in log units
## (prior to adjustments with offset)
if (displayBase != logBase) {
if (verbose) {
printDebug("minorLogTicks(): ",
"adjusting logBase to displayBase.");
}
displayLims1 <- c(logBase^abs(lims[1])*ifelse(lims[1] < 0, -1, 1),
logBase^abs(lims[2])*ifelse(lims[2] < 0, -1, 1));
displayLims2 <- (
log(offset + abs(displayLims1),
base=displayBase) *
ifelse(displayLims1 < 0, -1, 1));
displayLims <- c(floor(displayLims2[1]), ceiling(displayLims2[2]));
majorTicks <- seq(from=displayLims[1],
to=displayLims[2],
by=logStep);
#logBase <- displayBase;
} else {
majorTicks <- seq(from=lims[1], to=lims[2], by=1);
}
majorLabels <- sapply(majorTicks, function(i) {
iX <- getAxisLabel(i,
asValues,
logAxisType,
logBase=displayBase,
offset=offset,
symmetricZero=symmetricZero);
iX;
});
## majorLabels represents the numeric value associated with each
## axis position desired
##
## However, when offset == 1, it means the actual axis
## position for value=10 was calculated using log10(10+1),
## which slightly shifts the actual axis position to the right.
## Therefore, in that case we must re-calculate majorTicks using
## the new axis space.
if (offset > 0 || TRUE %in% symmetricZero) {
if (verbose) {
printDebug("minorLogTicks(): ",
"adjusted axis position for log base ",
logBase,
" labels using offset:",
offset);
printDebug("minorLogTicks(): ",
"majorTicks:",
format(digits=2, trim=TRUE, majorTicks));
}
if (any(majorLabels < 0) && any(majorLabels > 0)) {
if (verbose) {
printDebug("minorLogTicks(): ",
"Included zero with majorLabels since offset is non-zero");
}
majorLabels <- sort(unique(c(majorLabels, -1, 0)));
}
if (TRUE %in% symmetricZero) {
iUse <- noiseFloor(abs(majorLabels) + offset,
minimum=1);
majorTicks <- (log(iUse, base=logBase) *
ifelse(majorLabels < 0, -1, 1));
} else {
majorTicks <- log(abs(majorLabels) + offset,
base=logBase) * ifelse(majorLabels < 0, -1, 1);
}
} else {
majorTicks <- log(majorLabels + offset, base=logBase);
}
majorLabelsDF <- data.frame(
check.names=FALSE,
stringsAsFactors=FALSE,
label=majorLabels,
type="major",
use=TRUE,
tick=majorTicks);
## Confirm that the labels are unique
cleanLTdf <- function(df) {
df <- df[rev(seq_len(nrow(df))),,drop=FALSE];
df <- subset(df, !(is.infinite(df$tick) | is.na(df$tick)));
df <- df[match(unique(df$label), df$label),,drop=FALSE];
df <- df[match(unique(df$tick), df$tick),,drop=FALSE];
df <- df[rev(seq_len(nrow(df))),,drop=FALSE];
df;
}
majorLabelsDF <- cleanLTdf(majorLabelsDF);
majorTicks <- majorLabelsDF$tick;
majorLabels <- majorLabelsDF$majorLabels;
if (verbose) {
printDebug("minorLogTicks(): ",
"majorLabels:",
majorLabels);
printDebug("minorLogTicks(): ",
"majorTicks:",
format(digits=2, trim=TRUE, majorTicks));
print(majorLabelsDF);
}
## Define the minor Ticks by the first two values from pretty()
if (displayBase == 2) {
minorSet <- c(`2`=1.5);
} else {
minorSet <- setdiff(
seq(from=1, to=displayBase, length.out=displayBase),
c(1, displayBase));
names(minorSet) <- nameVector(minorSet);
}
if (length(minorWhich) > 0) {
## Make sure minorWhich is contained in minorSet
minorWhich <- minorSet[names(minorSet) %in% as.character(minorWhich) |
minorSet %in% minorWhich];
} else {
minorWhich <- minorSet;
}
if (verbose) {
printDebug("minorLogTicks(): ",
"minorSet:",
minorSet);
printDebug("minorLogTicks(): ",
"minorWhich:",
minorWhich);
}
## Calculate minor labels
minorLabelsDF <- as.data.frame(rbindList(
lapply(majorTicks, function(i){
if (verbose) {
printDebug("minorLogTicks(): ",
"Calculating minor ticks based upon majorTick:",
i);
}
if ((offset > 0 && i < 0) ||
symmetricZero ||
igrepHas("flip", logAxisType)) {
iBase <- logBase^i - offset;
iBaseAbs <- (logBase^abs(i) - offset) * ifelse(i < 0, -1, 1);
if (iBase == 0 ||
(symmetricZero && i == 0)) {
iSeries <- unique(sort(c(-1 * minorSet * iBase,
minorSet *iBase)));
iSeriesLab <- unique(sort(c(-1 * minorWhich * iBase,
minorWhich * iBase)));
if (verbose) {
printDebug(" 1 iSeries:",
format(scientific=FALSE, trim=TRUE, iSeries));
printDebug(" 1 iSeriesLab:",
format(scientific=FALSE, trim=TRUE, iSeriesLab));
}
} else {
iSeries <- unique(sort(minorSet * iBaseAbs));
iSeriesLab <- unique(sort(minorWhich * iBaseAbs));
if (iBase < 0) {
iSeries <- rev(iSeries);
}
if (offset == 0 &&
symmetricZero &&
iBase == 1) {
if (verbose) {
printDebug(" inserted positive/negative values:",
format(scientific=FALSE, trim=TRUE, iSeries));
}
iSeries <- iSeries[iSeries >= 1];
iSeries <- sort(unique(c(iSeries, -1*iSeries)));
iSeriesLab <- iSeriesLab[iSeriesLab >= 1];
iSeriesLab <- sort(unique(c(iSeriesLab, -1*iSeriesLab)));
}
if (verbose) {
printDebug(" 2 iSeries:",
format(scientific=FALSE, trim=TRUE, iSeries));
printDebug(" 2 iSeriesLab:",
format(scientific=FALSE, trim=TRUE, iSeriesLab));
}
}
iSet <- unique(log(abs(iSeries), base=logBase)*ifelse(sign(iSeries)<0,-1,1));
} else {
iBase <- logBase^i - offset;
iSeries <- unique(sort(minorSet * iBase));
iSeriesLab <- unique(sort(minorWhich * iBase));
iSet <- log(iSeries, base=logBase);
if (verbose) {
printDebug(" 3 iSeries:",
format(scientific=FALSE, trim=TRUE, iSeries));
}
}
data.frame(label=iSeries,
type="minor",
use=(iSeries %in% iSeriesLab));
})
));
## Remove any minor labels which overlap major labels
minorLabelsDF <- minorLabelsDF[!minorLabelsDF$label %in% majorLabelsDF$label,,drop=FALSE];
#minorLabelsUse <- minorLabelsAll[minorLabelsAll[,"label"],"series"];
## Calculate minor ticks
if (offset > 0 ||
symmetricZero ||
igrepHas("flip", logAxisType)) {
#minorTicksAll <- (log(abs(minorLabels)+offset, logBase) *
# ifelse(minorLabels < 0, -1, 1));
minorTicksAll <- (log(abs(minorLabelsDF$label)+offset, logBase) *
ifelse(minorLabelsDF$label < 0, -1, 1));
minorLabelsDF$tick <- minorTicksAll;
} else if (igrepHas("flip", logAxisType)) {
minorTicksAll <- (log(abs(minorLabelsDF$label)+offset, logBase) *
ifelse(minorLabelsDF$label < 0, -1, 1));
minorLabelsDF$tick <- minorTicksAll;
} else {
minorTicksAll <- log(minorLabelsDF$label+offset, logBase);
minorLabelsDF$tick <- minorTicksAll;
}
minorLabelsDF <- subset(minorLabelsDF,
!minorLabelsDF$tick %in% majorLabelsDF$tick)
minorLabelsDF <- cleanLTdf(minorLabelsDF);
minorTicks <- minorLabelsDF$tick;
allLabelsDF <- rbind(majorLabelsDF,
minorLabelsDF);
allLabelsDF <- cleanLTdf(allLabelsDF);
allLabelsDF$text <- ifelse(allLabelsDF$use, allLabelsDF$label, NA);
type <- NULL;
majorLabels <- subset(allLabelsDF, type %in% "major")$text;
majorTicks <- subset(allLabelsDF, type %in% "major")$tick;
minorLabels <- subset(allLabelsDF, type %in% "minor")$text;
minorTicks <- subset(allLabelsDF, type %in% "minor")$tick;
if (combine) {
majorTicks <- sort(unique(c(majorTicks, minorTicks)));
minorTicks <- majorTicks;
}
minorLabels1 <- sapply(names(minorTicks), function(iName) {
if (offset > 0 || symmetricZero) {
i <- (logBase^abs(minorTicks[iName]) - offset) * ifelse(minorTicks[iName] < 0, -1, 1);
} else {
i <- minorTicks[iName];
}
if (!igrepHas("^TRUE", iName)) {
iX <- "";
} else {
iX <- getAxisLabel(i,
asValues,
logAxisType,
logBase,
offset=offset);
}
iX;
});
minorLabels1 <- unname(minorLabels1);
minorTicks <- unname(minorTicks);
## if the axis is log transformed, we must exponentiate the values for plotting to work properly
if ((side %in% c(1,3) && graphics::par("xlog")) ||
(side %in% c(2,4) && graphics::par("ylog"))) {
if (verbose) {
printDebug("minorLogTicks(): ",
"Exponentiating axis coordinates.");
}
allLabelsDF$base_tick <- allLabelsDF$tick;
allLabelsDF$tick <- 10^allLabelsDF$tick;
majorTicks <- 10^majorTicks;
minorTicks <- 10^minorTicks;
}
## Optionally combine labels
if (combine) {
majorLabels <- minorLabels;
minorTicks <- numeric(0);
minorLabels <- character(0);
}
retVals <- list(majorTicks=majorTicks,
minorTicks=minorTicks,
allTicks=sort(c(minorTicks, majorTicks)),
majorLabels=majorLabels,
minorLabels=minorLabels,
minorLabels1=minorLabels1,
minorSet=minorSet,
minorWhich=minorWhich,
allLabelsDF=allLabelsDF);
return(retVals);
}
#' Determine square root axis tick mark positions
#'
#' Determine square root axis tick mark positions, including positive
#' and negative range values.
#'
#' This function calculates positions for tick marks for data
#' that has been transformed with `sqrt()`, specifically a directional
#' transformation like `sqrt(abs(x)) * sign(x)`.
#'
#' The main goal of this function is to provide reasonably placed
#' tick marks using integer values.
#'
#' @family jam plot functions
#'
#' @returns invisible `list` with axis positions, and corresponding labels.
#'
#' @param side `integer` value indicating the axis position, as used
#' by `graphics::axis()`, 1=bottom, 2=left, 3=top, 4=right.
#' @param x optional `numeric` vector representing the numeric range
#' to be labeled.
#' @param pretty.n `numeric` value indicating the number of desired
#' tick marks, passed to `pretty()`.
#' @param u5.bias `numeric` value passed to `pretty()` to influence the
#' frequency of intermediate tick marks.
#' @param big.mark `character` value passed to `format()` which helps
#' visually distinguish numbers larger than 1000.
#' @param plot `logical` indicating whether to plot the axis tick
#' marks and labels.
#' @param las,cex.axis `numeric` values passed to `graphics::axis()`
#' when drawing the axis. The custom default `las=2` plots labels rotated
#' perpendicular to the axis.
#' @param ... additional parameters are passed to `pretty()`.
#'
#' @examples
#' plot(-3:3*10, -3:3*10, xaxt="n")
#' sqrtAxis(1)
#'
#' @export
sqrtAxis <- function
(side=1,
x=NULL,
pretty.n=10,
u5.bias=0,
big.mark=",",
plot=TRUE,
las=2,
cex.axis=0.6,
...)
{
## Purpose is to generate a set of tick marks for sqrt
## transformed data axes. It assumes data is already sqrt-transformed,
## and that negative values have been treated like:
## sqrt(abs(x))*sign(x)
if (length(side) > 2) {
x <- side;
side <- 0;
}
if (length(side) == 0) {
side <- 0;
}
if (1 %in% side) {
xRange <- graphics::par("usr")[1:2];
} else if (2 %in% side) {
xRange <- graphics::par("usr")[3:4];
} else if (length(x) > 0) {
xRange <- range(x, na.rm=TRUE);
}
subdivideSqrt <- function(atPretty1, n=pretty.n, ...) {
## Purpose is to take x in form of 0,x1,
## and subdivide using pretty()
atPretty1a <- unique(sort(abs(atPretty1)));
atPretty1b <- tail(atPretty1a, -2);
atPretty2a <- pretty(head(atPretty1a,2), n=n, ...);
return(unique(sort(c(atPretty2a, atPretty1b))));
}
## Determine tick positions
nSubFactor <- 2.44;
atPretty1 <- pretty(xRange^2*sign(xRange),
u5.bias=u5.bias,
n=(pretty.n)^(1/nSubFactor));
atPretty1old <- atPretty1;
while (length(atPretty1) <= pretty.n) {
atPretty1new <- subdivideSqrt(atPretty1,
n=noiseFloor(minimum=2, (pretty.n)^(1/nSubFactor)));
atPretty1 <- atPretty1new[atPretty1new <= max(abs(xRange^2))];
atPretty1old <- atPretty1;
}
atPretty3 <- unique(sort(
rep(atPretty1,
each=length(unique(sign(xRange)))) * sign(xRange)));
atPretty <- atPretty3[
(atPretty3 >= head(xRange,1)^2*sign(head(xRange,1)) &
atPretty3 <= tail(xRange, 1)^2*sign(tail(xRange, 1)))];
xLabel <- sapply(atPretty, function(i){
format(i,
trim=TRUE,
digits=2,
big.mark=big.mark);
});
## Transform to square root space
atSqrt <- sqrt(abs(atPretty))*sign(atPretty);
if (plot) {
graphics::axis(side=side,
at=atSqrt,
labels=xLabel,
las=las,
cex.axis=cex.axis,
...);
}
invisible(nameVector(atSqrt, xLabel));
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.