#' Predict scores using a random forest.
#'
#' @param id Unique ID for the method and its results.
#' @param name Human readable name for the method.
#' @param description Method description.
#' @param seed The seed will be used to make the results reproducible.
#' @param n_models This number specifies how many sets of training data should
#' be created. For each set, there will be a model trained on the remaining
#' training data and validated using this set. For non-training genes, the
#' final score will be the mean of the result of applying the different
#' models. There should be at least two training sets. The analysis will only
#' work, if there is at least one reference gene per training set. By default,
#' one model per reference gene will be used.
#' @param control_ratio The proportion of random control genes that is included
#' in the training data sets in addition to the reference genes. This should
#' be a numeric value between 0.0 and 1.0.
#'
#' @return An object of class `geposan_method`.
#'
#' @export
random_forest <- function(id = "rforest",
name = "Random forest",
description = "Assessment by random forest",
seed = 180199,
n_models = NULL,
control_ratio = 0.75) {
method(
id = id,
name = name,
description = description,
help = paste0(
"Assessment of a random forest model trained on reference gene ",
"distances. It may derive patterns in positional data that have not ",
"been covered by other methods."
),
function(preset, progress) {
species_ids <- preset$species_ids
gene_ids <- preset$gene_ids
reference_gene_ids <- preset$reference_gene_ids
reference_count <- length(reference_gene_ids)
if (is.null(n_models)) {
n_models = reference_count
}
cached(
id,
c(
species_ids,
gene_ids,
reference_gene_ids,
seed,
n_models,
control_ratio
),
{ # nolint
stopifnot(n_models %in% 2:reference_count)
control_count <- ceiling(reference_count * control_ratio /
(1 - control_ratio))
# Make results reproducible.
set.seed(seed)
# Step 1: Prepare input data.
# ---------------------------
# Prefilter distances by species and gene.
distances <- geposan::distances[species %chin% species_ids &
gene %chin% gene_ids]
# Reshape data to put species into columns.
data <- dcast(
distances,
gene ~ species,
value.var = "distance"
)
# Replace values that are still missing with mean values for the
# species in question.
data[, (species_ids) := lapply(species_ids, \(species) {
species <- get(species)
species[is.na(species)] <- mean(species, na.rm = TRUE)
species
})]
progress(0.1)
# Step 2: Prepare training data.
# ------------------------------
# Take out the reference data.
reference_data <- data[gene %chin% reference_gene_ids]
reference_data[, score := 1.0]
# Draw control data from the remaining genes.
control_data <- data[!gene %chin% reference_gene_ids][
sample(.N, control_count)
]
control_data[, score := 0.0]
# Randomly distribute the indices of the reference and control genes
# across one bucket per model.
reference_sets <- split(
sample(reference_count),
seq_len(reference_count) %% n_models
)
control_sets <- split(
sample(control_count),
seq_len(control_count) %% n_models
)
# Prepare the data for each model. Each model will have one pair of
# reference and control gene sets left out for validation. The
# training data consists of all the remaining sets.
models <- lapply(seq_len(n_models), \(index) {
training_data <- rbindlist(list(
reference_data[!reference_sets[[index]]],
control_data[!control_sets[[index]]]
))
validation_data <- rbindlist(list(
reference_data[reference_sets[[index]]],
control_data[control_sets[[index]]]
))
list(
training_data = training_data,
validation_data = validation_data
)
})
# Step 3: Create, train and apply the models.
# -------------------------------------------
output_vars <- NULL
for (i in seq_along(models)) {
model <- models[[i]]
forest <- ranger::ranger(
x = model$training_data[, ..species_ids],
y = model$training_data$score
)
# TODO: Make use of validation data.
# Apply the model.
data[, new_score := stats::predict(forest, data)$predictions]
# Remove the values of the training data itself.
data[gene %chin% model$training_data$gene, new_score := NA]
output_var <- sprintf("score%i", i)
setnames(data, "new_score", output_var)
output_vars <- c(output_vars, output_var)
# Store the details.
models[[i]]$forest <- forest
progress(0.1 + i * (0.9 / n_models))
}
# Compute the final score as the mean score.
data[,
score := mean(as.numeric(.SD), na.rm = TRUE),
.SDcols = output_vars,
by = gene
]
progress(1.0)
result(
method = id,
scores = data[, .(gene, score)],
details = list(
seed = seed,
n_models = n_models,
all_results = data[, !..species_ids],
models = models
)
)
}
)
}
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.