#' Rank the results by computing a score.
#'
#' This function takes the result of [analyze()] and creates a score by
#' computing a weighted mean across the different methods' results.
#'
#' @param analysis Analysis object resulting from [analyze()].
#' @param weights Named list pairing method names with weighting factors. Only
#' methods that are contained within this list will be included.
#'
#' @returns A ranking object. The object extends the analysis result with
#' additional columns containing the `score`, the `rank` and the `percentile`
#' for each gene. It will be ordered by rank.
#'
#' @export
ranking <- function(analysis, weights) {
ranking <- if (inherits(analysis, "geposan_analysis")) {
copy(analysis$scores)
} else if (inherits(analysis, "geposan_ranking")) {
copy(analysis)
} else {
stop("Invalid analyis. Use geposan::analyze().")
}
ranking[, score := 0.0]
for (method in names(weights)) {
weighted <- weights[[method]] * ranking[, ..method]
ranking[, score := score + weighted]
}
# Normalize scores to be between 0.0 and 1.0.
min_score <- ranking[, min(score)]
max_score <- ranking[, max(score)]
score_range <- max_score - min_score
ranking[, score := (score - min_score) / score_range]
setorder(ranking, -score)
ranking[, rank := .I]
ranking[, percentile := 1 - rank / nrow(ranking)]
structure(
ranking,
class = c("geposan_ranking", class(ranking))
)
}
#' Find the best weights to rank the results.
#'
#' This function finds the optimal parameters to [ranking()] that result in the
#' reference genes ranking particulary high.
#'
#' @param analysis Results from [analyze()] or [ranking()].
#' @param methods Methods to include in the score.
#' @param reference_gene_ids IDs of the reference genes.
#' @param target The optimization target. It may be one of "mean", "median",
#' "min" or "max" and results in the respective rank being optimized.
#'
#' @returns Named list pairing method names with their optimal weights. This
#' can be used as an argument to [ranking()].
#'
#' @export
optimal_weights <- function(analysis, methods, reference_gene_ids,
target = "mean") {
if (!inherits(analysis, c("geposan_analysis", "geposan_ranking"))) {
stop("Invalid analyis. Use geposan::analyze().")
}
# Compute the target rank of the reference genes when applying the
# weights.
target_rank <- function(factors) {
data <- ranking(analysis, as.list(factors))
result <- data[
gene %chin% reference_gene_ids,
if (target == "min") {
min(rank)
} else if (target == "max") {
max(rank)
} else if (target == "mean") {
mean(rank)
} else {
stats::median(rank)
}
]
if (result > 0) {
result
} else {
Inf
}
}
initial_factors <- rep(1.0, length(methods))
names(initial_factors) <- methods
optimal_factors <- stats::optim(initial_factors, target_rank)$par
as.list(optimal_factors / max(abs(optimal_factors)))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.