R/ranking.R

Defines functions optimal_weights ranking

Documented in optimal_weights ranking

#' Rank the results by computing a score.
#'
#' This function takes the result of [analyze()] and creates a score by
#' computing a weighted mean across the different methods' results.
#'
#' @param analysis Analysis object resulting from [analyze()].
#' @param weights Named list pairing method names with weighting factors. Only
#'   methods that are contained within this list will be included.
#'
#' @returns A ranking object. The object extends the analysis result with
#'   additional columns containing the `score`, the `rank` and the `percentile`
#'   for each gene. It will be ordered by rank.
#'
#' @export
ranking <- function(analysis, weights) {
  ranking <- if (inherits(analysis, "geposan_analysis")) {
    copy(analysis$scores)
  } else if (inherits(analysis, "geposan_ranking")) {
    copy(analysis)
  } else {
    stop("Invalid analyis. Use geposan::analyze().")
  }

  ranking[, score := 0.0]

  for (method in names(weights)) {
    weighted <- weights[[method]] * ranking[, ..method]
    ranking[, score := score + weighted]
  }

  # Normalize scores to be between 0.0 and 1.0.
  min_score <- ranking[, min(score)]
  max_score <- ranking[, max(score)]
  score_range <- max_score - min_score
  ranking[, score := (score - min_score) / score_range]

  setorder(ranking, -score)
  ranking[, rank := .I]
  ranking[, percentile := 1 - rank / nrow(ranking)]

  structure(
    ranking,
    class = c("geposan_ranking", class(ranking))
  )
}

#' Find the best weights to rank the results.
#'
#' This function finds the optimal parameters to [ranking()] that result in the
#' reference genes ranking particulary high.
#'
#' @param analysis Results from [analyze()] or [ranking()].
#' @param methods Methods to include in the score.
#' @param reference_gene_ids IDs of the reference genes.
#' @param target The optimization target. It may be one of "mean", "median",
#'   "min" or "max" and results in the respective rank being optimized.
#'
#' @returns Named list pairing method names with their optimal weights. This
#'   can be used as an argument to [ranking()].
#'
#' @export
optimal_weights <- function(analysis, methods, reference_gene_ids,
                            target = "mean") {
  if (!inherits(analysis, c("geposan_analysis", "geposan_ranking"))) {
    stop("Invalid analyis. Use geposan::analyze().")
  }


  # Compute the target rank of the reference genes when applying the
  # weights.
  target_rank <- function(factors) {
    data <- ranking(analysis, as.list(factors))

    result <- data[
      gene %chin% reference_gene_ids,
      if (target == "min") {
        min(rank)
      } else if (target == "max") {
        max(rank)
      } else if (target == "mean") {
        mean(rank)
      } else {
        stats::median(rank)
      }
    ]

    if (result > 0) {
      result
    } else {
      Inf
    }
  }

  initial_factors <- rep(1.0, length(methods))
  names(initial_factors) <- methods

  optimal_factors <- stats::optim(initial_factors, target_rank)$par

  as.list(optimal_factors / max(abs(optimal_factors)))
}
johrpan/geposan documentation built on Feb. 28, 2025, 3:48 a.m.