test_that("individual specific latent trait initialisation", {
N <- 100
D <- 15
L <- 4
W <- array(rnorm(D*L), c(D, L))
lambda <- 10000
Z <- matrix(rnorm(L * N), N, L)
X <- Z %*% t(W) + matrix(rnorm(D * N, sd = sqrt(1 / lambda)), N, D)
init_Z <- initialise_individual_specific_latent_traits(
auxiliary_traits = X,
loading = W,
precision = lambda
)
checkmate::expect_matrix(init_Z, mode = "numeric", nrows = N, ncols = L)
})
test_that("individual specific latent trait precision", {
D <- 15
L <- 4
W <- array(rnorm(D*L), c(D, L))
W_outer <- apply(W, 1, function(x) x %*% t(x)) %>%
array(c(L, L, D))
lambda <- rgamma(D, 1, 1)
tau <- runif(L, 0, 0.5)
expect_equal(
W_outer[, , 1], W[1, ] %*% t(W[1, ])
)
tmp <- diag(1 / tau^2)
for (i in 1:D) {
tmp <- tmp + lambda[i] * W_outer[, , i]
}
expect_equal(
compute_individual_specific_latent_trait_precision(
precision_vector = lambda,
loading_outer_product_expectation = W_outer,
within_taxon_amplitude = tau,
perform_checks = TRUE
),
tmp
)
})
test_that("individual specific latent trait expectation", {
D <- 15
L <- 4
W <- array(rnorm(D*L), c(D, L))
W_outer <- apply(W, 1, function(x) x %*% t(x)) %>%
array(c(L, L, D))
lambda <- rgamma(D, 1, 1)
tau <- runif(L, 0, 0.5)
inv_S_z <- compute_individual_specific_latent_trait_precision(
precision_vector = lambda,
loading_outer_product_expectation = W_outer,
within_taxon_amplitude = tau,
perform_checks = TRUE
)
z <- rnorm(L)
x <- W %*% z + rnorm(D, sd = sqrt(1 / lambda))
f <- rnorm(L)
S_z <- solve(inv_S_z)
tmp <- S_z %*% (
(t(W) %*% diag(lambda) %*% x) + (diag(1 / (tau^2)) %*% f)
)
expect_equal(
compute_individual_specific_latent_trait_expectation(
auxiliary_trait = x,
loading = W,
taxon_specific_latent_trait = f,
precision_vector = lambda,
individual_specific_latent_trait_precision = inv_S_z,
within_taxon_amplitude = tau,
perform_checks = TRUE
),
c(tmp)
)
})
test_that("terminal taxon-specific latent trait precision", {
N <- 10
L <- 4
tau <- runif(L, 0, 0.5)
eta <- runif(L, 0, 0.5)
tmp <- N * (1 / tau^2) + (1 / eta^2)
expect_equal(
compute_terminal_taxon_specific_latent_trait_precision(
N = N,
within_taxon_amplitude = tau,
conditional_standard_deviation = eta
),
tmp
)
})
test_that("terminal taxon-specific latent trait expectation", {
N <- 111
L <- 4
tau <- runif(L, 0, 0.5)
eta <- runif(L, 0, 0.5)
nu <- runif(L, 0.5, 1)
f_pa <- rnorm(L)
f <- nu * f_pa + rnorm(L, sd = eta)
Z <- sweep(
matrix(rnorm(N*L, sd = tau), nrow = N, ncol = L, byrow = TRUE),
2, f, "+"
)
inv_S_f <- compute_terminal_taxon_specific_latent_trait_precision(
N = N,
within_taxon_amplitude = tau,
conditional_standard_deviation = eta
)
S_f <- 1 / inv_S_f
tmp <- S_f * (colSums(Z %*% diag(1 / tau^2)) + (nu * f_pa / (eta^2)))
expect_equal(
compute_terminal_taxon_specific_latent_trait_expectation(
individual_specific_latent_traits = Z,
within_taxon_amplitude = tau,
parent_taxon_latent_trait = f_pa,
conditional_expectation_weight = nu,
conditional_standard_deviation = eta,
latent_trait_precision = inv_S_f,
perform_checks = TRUE
),
tmp
)
})
test_that("internal taxon-specific latent trait precision", {
N <- 2
L <- 4
eta <- runif(L, 0, 0.5)
eta_ch <- matrix(runif(N * L, 0, 0.5), nrow = N, ncol = L)
nu_ch <- matrix(runif(N * L, 0.5, 1), nrow = N, ncol = L)
tmp <- (nu_ch / eta_ch) %>%
magrittr::raise_to_power(2) %>%
apply(2, sum) %>%
magrittr::add(1 / eta^2)
expect_equal(
compute_internal_taxon_specific_latent_trait_precision(
child_taxa_conditional_expectation_weights = nu_ch,
child_taxa_conditional_standard_deviations = eta_ch,
conditional_standard_deviation = eta
),
tmp
)
})
test_that("internal taxon-specific latent trait expectation", {
N <- 2
L <- 4
eta <- runif(L, 0, 0.5)
nu <- runif(L, 0.5, 1)
eta_ch <- matrix(runif(N * L, 0, 0.5), nrow = N, ncol = L)
nu_ch <- matrix(runif(N * L, 0.5, 1), nrow = N, ncol = L)
f_pa <- rnorm(L)
f <- nu * f_pa + rnorm(L, sd = eta)
f_ch <- sweep(
matrix(rnorm(N*L, sd = nu_ch), nrow = N, ncol = L, byrow = TRUE),
2, f, "+"
)
inv_S_f <- compute_internal_taxon_specific_latent_trait_precision(
child_taxa_conditional_expectation_weights = nu_ch,
child_taxa_conditional_standard_deviations = eta_ch,
conditional_standard_deviation = eta
)
tmp <- (nu_ch * f_ch / (eta_ch^2)) %>%
apply(2, sum) %>%
magrittr::add(
nu * f_pa / (eta^2)
) %>%
magrittr::divide_by(
inv_S_f
)
expect_equal(
compute_internal_taxon_specific_latent_trait_expectation(
child_taxa_latent_traits = f_ch,
child_taxa_conditional_expectation_weights = nu_ch,
child_taxa_conditional_standard_deviations = eta_ch,
parent_taxon_latent_trait = f_pa,
conditional_expectation_weight = nu,
conditional_standard_deviation = eta,
latent_trait_precision = inv_S_f,
perform_checks = TRUE
),
tmp
)
})
test_that("individual specific latent trait contribution to the elbo", {
P <- 4
L <- 4
tn <- c("ord", "nom", "con", "fvt")
tt <- factor(tn, levels = c("ord", "nom", "con", "fvt"))
ind_mt <- list(
ord = 2L, nom = 3L, con = 4L, fvt = 5:36
)
mt <- cbind(synthetic_traits[, 1:4], fvt = t(simplify2array(synthetic_traits$fvt)))
N <- nrow(mt)
K <- c(4, 3, NA, NA)
ind_at <- list(
ord = 1L, nom = 1 + 1:3, con = 5L, fvt = 5 + 1:32
)
D_p <- sum(sapply(ind_at, length))
cat <- list(
ord = NA,
nom = factor(levels(mt$nom)),
con = NA, fvt = NA
)
gamma <- list(
ord = c(-Inf, 0, 1, 2, Inf),
nom = NA, con = NA, fvt = NA
)
g <- list(
ord = ordinal_link, nom = nominal_link, con = function(x) x, fvt = function(x) exp(x)
)
g_inv <- list(
ord = function(y){
ordinal_inverse_link(
y, cut_off_points = gamma$ord,
mu = rep(0, N), return_expectation = FALSE
)
},
nom = function(y){
nominal_inverse_link(
y, mu = matrix(0, N, length(cat$nom)),
n_samples = 1000, return_expectation = FALSE
)
},
con = function(y) y,
fvt = function(y) log(data.matrix(y))
)
meta <- specify_manifest_trait_metadata(
n_traits = P, trait_names = tn, trait_type = tt,
trait_levels = K,
manifest_trait_index = ind_mt, auxiliary_trait_index = ind_at,
link_functions = g,
inverse_link_functions = g_inv,
cut_off_points = gamma, categories = cat,
manifest_trait_df = mt,
perform_checks = TRUE
)
C_w <- diag(D_p)
x <- seq(0, 1, length.out = length(ind_at[[4]]))
d <- abs(outer(x, x, "-"))
ell <- 1 / (2 * pi)
C_w[ind_at[[4]], ind_at[[4]]] <- (exp_quad_kernel(d, 1, ell) + (1e-6 * diag(length(ind_at[[4]])))) / (1 + 1e-6)
ph <- vbar::synthetic_trait_model_specification$phylogeny
S <- length(ph$tip.label)
plvm <- initialise_plvm(
manifest_trait_df = mt, metadata = meta, phy = ph,
L = L,
loading_prior_correlation = C_w,
auxiliary_traits = NULL,
precision = NULL,
ard_precision = NULL,
ard_shape = 1, ard_rate = 1,
loading = NULL, method = "random",
within_taxon_amplitude = NULL,
heritable_amplitude = NULL,
length_scale = 2,
perform_checks = TRUE
)
npt <- table(
mt$taxon_id
)[ph$tip.label] %>% as.numeric()
elbo <- compute_individual_specific_latent_trait_elbo(
individual_specific_latent_trait_expectation = plvm$individual_specific_latent_trait_expectation,
taxon_id = mt$taxon_id, phy = ph,
terminal_taxon_specific_latent_trait_expectation = plvm$taxon_specific_latent_trait_expectation[1:S,],
individual_specific_latent_trait_covariance = plvm$individual_specific_latent_trait_covariance,
individual_specific_latent_trait_outer_product_expectation = plvm$individual_specific_latent_trait_outer_product_expectation,
terminal_taxon_latent_trait_outer_product_expectation = plvm$taxon_specific_latent_trait_outer_product_expectation[, , 1:S],
within_taxon_amplitude = plvm$within_taxon_amplitude,
perform_checks = TRUE
)
tmp1 <- apply(plvm$individual_specific_latent_trait_outer_product_expectation, c(1, 2), sum)
tmp2 <- sweep(
plvm$taxon_specific_latent_trait_outer_product_expectation[, , 1:S],
3, npt, "*"
) %>%
apply(c(1, 2), sum)
expect_equal(
elbo,
- 0.5 * N * determinant(diag(plvm$within_taxon_amplitude^2))$modulus[1] -
(0.5 * sum(diag((tmp1 + tmp2) %*% diag(plvm$within_taxon_amplitude^-2)))) +
sum(sapply(
1:S, function(i){
t(plvm$taxon_specific_latent_trait_expectation[i, ]) %*%
diag(plvm$within_taxon_amplitude^-2) %*%
colSums(
plvm$individual_specific_latent_trait_expectation[mt$taxon_id == ph$tip.label[i], ]
)
})) +
0.5 * N * determinant(plvm$individual_specific_latent_trait_covariance)$modulus[1]
)
})
test_that("taxon specific latent trait contribution to the elbo", {
P <- 4
L <- 4
tn <- c("ord", "nom", "con", "fvt")
tt <- factor(tn, levels = c("ord", "nom", "con", "fvt"))
ind_mt <- list(
ord = 2L, nom = 3L, con = 4L, fvt = 5:36
)
mt <- cbind(synthetic_traits[, 1:4], fvt = t(simplify2array(synthetic_traits$fvt)))
N <- nrow(mt)
K <- c(4, 3, NA, NA)
ind_at <- list(
ord = 1L, nom = 1 + 1:3, con = 5L, fvt = 5 + 1:32
)
D_p <- sum(sapply(ind_at, length))
cat <- list(
ord = NA,
nom = factor(levels(mt$nom)),
con = NA, fvt = NA
)
gamma <- list(
ord = c(-Inf, 0, 1, 2, Inf),
nom = NA, con = NA, fvt = NA
)
g <- list(
ord = ordinal_link, nom = nominal_link, con = function(x) x, fvt = function(x) exp(x)
)
g_inv <- list(
ord = function(y){
ordinal_inverse_link(
y, cut_off_points = gamma$ord,
mu = rep(0, N), return_expectation = FALSE
)
},
nom = function(y){
nominal_inverse_link(
y, mu = matrix(0, N, length(cat$nom)),
n_samples = 1000, return_expectation = FALSE
)
},
con = function(y) y,
fvt = function(y) log(data.matrix(y))
)
meta <- specify_manifest_trait_metadata(
n_traits = P, trait_names = tn, trait_type = tt,
trait_levels = K,
manifest_trait_index = ind_mt, auxiliary_trait_index = ind_at,
link_functions = g,
inverse_link_functions = g_inv,
cut_off_points = gamma, categories = cat,
manifest_trait_df = mt,
perform_checks = TRUE
)
C_w <- diag(D_p)
x <- seq(0, 1, length.out = length(ind_at[[4]]))
d <- abs(outer(x, x, "-"))
ell <- 1 / (2 * pi)
C_w[ind_at[[4]], ind_at[[4]]] <- (exp_quad_kernel(d, 1, ell) + (1e-6 * diag(length(ind_at[[4]])))) / (1 + 1e-6)
ph <- vbar::synthetic_trait_model_specification$phylogeny
S <- length(ph$tip.label)
plvm <- initialise_plvm(
manifest_trait_df = mt, metadata = meta, phy = ph,
L = L,
loading_prior_correlation = C_w,
auxiliary_traits = NULL,
precision = NULL,
ard_precision = NULL,
ard_shape = 1, ard_rate = 1,
loading = NULL, method = "random",
within_taxon_amplitude = NULL,
heritable_amplitude = NULL,
length_scale = 2,
perform_checks = TRUE
)
to <- ph$edge[ape::postorder(ph), ]
elbo <- compute_taxon_specific_latent_trait_elbo(
taxon_specific_latent_trait_expectation = plvm$taxon_specific_latent_trait_expectation,
taxon_specific_latent_trait_outer_product_expectation = plvm$taxon_specific_latent_trait_outer_product_expectation,
taxon_specific_latent_trait_covariance = plvm$taxon_specific_latent_trait_covariance,
phy = ph,
phylogenetic_gp = plvm$phylogenetic_GP,
perform_checks = TRUE
)
tmp1 <- sum(sapply(
1:(2 * S - 2), function(i){
sum(diag((plvm$taxon_specific_latent_trait_outer_product_expectation[, , to[i, 2]] +
(diag(plvm$phylogenetic_GP[to[i, 2], "weight", ]) %*%
plvm$taxon_specific_latent_trait_outer_product_expectation[, , to[i, 1]] %*%
diag(plvm$phylogenetic_GP[to[i, 2], "weight", ]))
) %*% diag(plvm$phylogenetic_GP[to[i, 2], "sd", ]^-2)))
}
))
tmp2 <- sum(diag(plvm$taxon_specific_latent_trait_outer_product_expectation[, , S + 1] %*%
diag(plvm$phylogenetic_GP[S+1, "sd", ]^-2)))
expect_equal(
elbo,
- 0.5 * sum(sapply(
1:(2 * S - 1), function(i){
determinant(diag(plvm$phylogenetic_GP[i, "sd", ]^2))$modulus[1]
}
)) -
0.5 * (tmp1 + tmp2) +
sum(sapply(
1:(2 * S - 2), function(i){
t(plvm$taxon_specific_latent_trait_expectation[to[i, 1], ]) %*%
diag(plvm$phylogenetic_GP[to[i, 2], "weight", ]) %*%
diag(plvm$phylogenetic_GP[to[i, 2], "sd", ]^-2) %*%
plvm$taxon_specific_latent_trait_expectation[to[i, 2], ]
}
)) +
0.5 * sum(sapply(
1:(2 * S - 1), function(i){
determinant(exp(1) * diag(plvm$taxon_specific_latent_trait_covariance[i, ]))$modulus[1]
}
))
)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.