context("stan_occuTTD function and methods")
skip_on_cran()
set.seed(123)
N <- 500; J <- 1
scovs <- data.frame(elev=c(scale(runif(N, 0,100))),
forest=runif(N,0,1),
wind=runif(N,0,1))
beta_psi <- c(-0.69, 0.71)
psi <- plogis(cbind(1, scovs$elev) %*% beta_psi)
z <- rbinom(N, 1, psi)
#Simulate detection
Tmax <- 10 #Same survey length for all observations
beta_lam <- c(-2, 0.7)
rate <- exp(cbind(1, scovs$wind) %*% beta_lam)
ttd <- rexp(N, rate)
ttd[z==0] <- Tmax #Censor at unoccupied sites
ttd[ttd>Tmax] <- Tmax #Censor when ttd was greater than survey length
#Build unmarkedFrame
umf <- unmarkedFrameOccuTTD(y=ttd, surveyLength=Tmax, siteCovs=scovs)
umf2 <- umf
umf2@y[1,] <- NA
umf2@y[2,1] <- NA
set.seed(123)
ocovs <- data.frame(obs=rep(c('A','B'),N))
Tmax <- 10
rateB <- exp(cbind(1, scovs$wind) %*% beta_lam + 0.2)
rate2 <- as.numeric(t(cbind(rate, rateB)))
ttd <- rexp(N*2, rate2)
ttd[ttd>Tmax] <- Tmax
ttd <- matrix(ttd, nrow=N, byrow=T)
ttd[z==0,] <- Tmax
umf_2obs <- suppressWarnings(unmarkedFrameOccuTTD(y=ttd, surveyLength=Tmax,
siteCovs=scovs, obsCovs=ocovs))
good_fit <- TRUE
tryCatch({
fit <- suppressWarnings(stan_occuTTD(~elev, detformula=~wind,
data=umf[1:10,], chains=2, iter=100, refresh=0))
fit_na <- suppressWarnings(stan_occuTTD(~elev, detformula=~wind,
data=umf2[1:10,], chains=2, iter=100, refresh=0))
fit_2obs <- suppressWarnings(stan_occuTTD(~elev, detformula=~wind,
data=umf_2obs[1:10,], chains=2, iter=100, refresh=0))
fit_weib <- suppressWarnings(stan_occuTTD(~elev, detformula=~wind,
data=umf[1:10,], ttdDist="weibull",
chains=2, iter=100, refresh=0))
}, error=function(e){
good_fit <<- FALSE
})
skip_if(!good_fit, "Test setup failed")
test_that("stan_occuTTD output structure is correct",{
expect_is(fit, "ubmsFitOccuTTD")
expect_equal(nsamples(fit), 100)
})
test_that("stan_occuTTD produces accurate results",{
skip_on_ci()
skip_on_cran()
skip_on_covr()
set.seed(123)
fit_long <- suppressWarnings(stan_occuTTD(~elev, detformula=~wind,
data=umf, chains=3, iter=300, refresh=0))
fit_unm <- occuTTD(~elev, detformula=~wind, data=umf)
#similar to truth
expect_RMSE(coef(fit_long), c(beta_psi, beta_lam), 0.4)
#similar to unmarked
expect_RMSE(coef(fit_long), coef(fit_unm), 0.1)
#similar to previous known values
expect_RMSE(coef(fit_long), c(-0.805,0.714,-1.759,0.694), 0.05)
})
test_that("stan_occuTTD handles NA values",{
expect_is(coef(fit_na), "numeric")
})
test_that("extract_log_lik method works",{
ll <- extract_log_lik(fit)
expect_is(ll, "matrix")
expect_equal(dim(ll), c(100/2 * 2, numSites(fit@data)))
expect_between(sum(ll), -700, -400)
})
test_that("ubmsFitOccuTTD gof method gives error",{
expect_error(gof(fit, draws=5, quiet=TRUE))
})
test_that("stan_occuTTD predict method works",{
pr <- predict(fit_na, "state")
expect_is(pr, "data.frame")
expect_equal(dim(pr), c(10, 4))
expect_between(pr[1,1], 0, 1)
pr <- predict(fit_na, "det")
expect_equal(dim(pr), c(10,4))
expect_between(pr[1,1], 0, 10)
#with newdata
nd <- data.frame(elev=c(0,1))
pr <- predict(fit_na, "state", newdata=nd)
expect_equal(dim(pr), c(2,4))
expect_between(pr[1,1], 0, 1)
})
test_that("stan_occuTTD getP method works",{
p <- getP(fit, draws=3)
expect_equal(dim(p), c(10,1,3))
p2 <- getP(fit_weib, draws=3)
expect_equal(dim(p2), c(10,1,3))
pna <- getP(fit_na, draws=3)
expect_equal(dim(pna), c(10,1,3))
expect_true(all(is.na(pna[1:2,1,1])))
})
test_that("stan_occuTTD sim_z method works",{
set.seed(123)
samples <- get_samples(fit, 5)
zz <- sim_z(fit, samples, re.form=NULL)
expect_is(zz, "matrix")
expect_equal(dim(zz), c(length(samples), 10))
expect_equal(unique(as.vector(zz)), c(0,1))
expect_between(mean(zz), 0, 0.5)
set.seed(123)
pz <- posterior_predict(fit, "z", draws=5)
expect_equivalent(zz, pz)
})
test_that("stan_occuTTD sim_z method warns when >1 obs per site",{
expect_warning(posterior_predict(fit_2obs, "z", draws=3))
})
test_that("stan_occuTTD sim_y method works",{
set.seed(123)
samples <- get_samples(fit, 5)
yy <- sim_y(fit, samples, re.form=NULL)
expect_is(yy, "matrix")
expect_equal(dim(yy), c(length(samples), 10))
expect_equal(max(yy), max(umf@surveyLength))
set.seed(123)
py <- posterior_predict(fit, "y", draws=5)
expect_equivalent(yy, py)
})
test_that("Posterior sim methods for ubmsFitOccu work with NAs",{
zna <- posterior_predict(fit_na, "z", draws=3)
expect_equal(dim(zna), c(3,10))
expect_true(all(is.na(zna[,1])))
yna <- posterior_predict(fit_na, "y", draws=3)
expect_equal(dim(yna), c(3,10))
expect_equal(sum(is.na(yna[1,])), 2)
expect_equal(sum(is.na(yna[2,])), 2)
})
test_that("Posterior linear pred methods work for ubmsFitOccuTTD",{
set.seed(123)
samples <- get_samples(fit, 3)
lp1 <- sim_lp(fit, "state", transform=TRUE, samples=samples,
newdata=NULL, re.form=NULL)
expect_equal(dim(lp1), c(length(samples), 10))
set.seed(123)
pl <- posterior_linpred(fit, draws=3, submodel="state")
})
test_that("Fitted/residual methods work with ubmsFitOccuTTD",{
ubms_fitted <- methods::getMethod("fitted", "ubmsFit")
ubms_residuals <- methods::getMethod("residuals", "ubmsFit")
ubms_plot <- methods::getMethod("plot", "ubmsFit")
ft <- ubms_fitted(fit, "state", draws=5)
ft2 <- ubms_fitted(fit, "det", draws=5)
expect_equal(dim(ft), c(5,10))
expect_equal(dim(ft2), c(5,10))
res <- ubms_residuals(fit, "state", draws=5)
res2 <- ubms_residuals(fit, "det", draws=5)
expect_equal(dim(res), c(5,10))
expect_equal(dim(res2), c(5,10))
pdf(NULL)
rp <- plot_residuals(fit, "state")
rp2 <- plot_residuals(fit, "det")
rp3 <- ubms_plot(fit)
mp <- plot_marginal(fit, "state")
dev.off()
expect_is(rp, "gg")
expect_is(rp2, "gg")
expect_is(rp3, "gtable")
expect_is(mp, "gg")
})
test_that("occuTTD spatial works", {
skip_on_cran()
umf2 <- umf
umf2@siteCovs$x <- runif(numSites(umf2), 0, 10)
umf2@siteCovs$y <- runif(numSites(umf2), 0, 10)
fit_spat <- suppressMessages(suppressWarnings(stan_occuTTD(~elev+RSR(x,y,1),
detformula=~wind,
data=umf2[1:20,], chains=2, iter=100, refresh=0)))
expect_is(fit_spat@submodels@submodels$state, "ubmsSubmodelSpatial")
expect_equal(names(coef(fit_spat))[3], "state[RSR [tau]]")
ps <- plot_spatial(fit_spat)
expect_is(ps, "gg")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.