R/index.sem.R

Defines functions `reindex` updatelvm

Documented in updatelvm

##' @export
updatelvm <- function(x,mean=TRUE,...) {
    index(x) <- reindex(x,mean=mean,...)
    x$parpos <- parpos(x,mean=mean,...)
    return(x)
}

##' @export
"index" <- function(x,...) UseMethod("index")

##' @export
"index<-" <- function(x,...,value) UseMethod("index<-")

##' @export
"index.lvm" <- function(x,...) { x$index }

##' @export
"index.lvmfit" <- function(x,...) { index(Model(x)) }

##' @export
"index<-.lvm" <- function(x,...,value)  { x$index <- value; return(x) }

##' @export
"index<-.lvmfit" <- function(x,...,value) { Model(x)$index <- value; return(x) }


###   A  ## Matrix with fixed parameters and ones where parameters are free
###   J  ## Manifest variable selection matrix
###   M0 ## Index of free regression parameters
###   M1 ## Index of free and _unique_ regression parameters
###   P  ## Matrix with fixed variance parameters and ones where parameters are free
###   P0 ## Index of free variance parameters
###   P1 ## Index of free and _unique_ regression parameters
###   npar.var  ## Number of covariance parameters
##' @export
`reindex` <-
    function(x, sparse=FALSE,standard=TRUE,zeroones=FALSE,deriv=FALSE,mean=TRUE) { ## Extract indices of parameters from model
        x$parpos <- NULL
        M <- x$M

        eta <- latent(x) ## Latent variables/Factors
        m <- length(eta)
        obs <- manifest(x)  ## Manifest/Observed variables
        endo <- endogenous(x)
        exo <- exogenous(x) ##,index=FALSE)

        allvars <- vars(x)
        eta.idx <- na.omit(match(eta,allvars))
        obs.idx <- na.omit(match(obs,allvars))
        exo.idx <- na.omit(match(exo,allvars))
        exo.obsidx <- na.omit(match(exo,obs))
        endo.obsidx <- na.omit(match(endo,obs))

        fix.idx <- !is.na(x$fix) ## Index of fixed parameters
        covfix.idx <- !is.na(x$covfix) ## Index of fixed covariance parameters

        constrain.par <- NULL
        if (length(constrain(x))>0) constrain.par <- names(constrain(x))

        M0 <- M;  M0[fix.idx] <- 0 ## Matrix of indicators of free regression-parameters (removing fixed parameters)
        M1 <- M0; ## Matrix of indiciator of free _unique_ regression parameters (removing fixed _and_ duplicate parameters)
        parname <- unique(x$par[!is.na(x$par)])
        for (p in parname) {
            ii <- which(x$par==p)
            if (length(ii)>1)
                M1[ii[-1]] <- 0
            if (p %in% constrain.par)
                M0[ii] <- M1[ii] <- 0
        }
        npar.reg <- sum(M1) ## Number of free regression parameters

        P <- x$cov;

        P0 <- P;  P0[covfix.idx] <- 0 ## Matrix of indicators of free covariance-parameters (removing fixed parameters)
        if (length(exo.idx)>0)
            P0[exo.idx,exo.idx] <- 0 ## 6/1-2011
        P1 <- P0 ## Matrix of indiciator of free _unique_ variance parameters (removing fixed _and_ duplicate parameters)
        covparname <- unique(x$covpar[!is.na(x$covpar)])
        for (p in covparname) {
            ii <- which(x$covpar==p)
            if (length(ii)>1)
                P1[ii[-1]] <- 0
            if (p%in%c(parname,constrain.par))
                P0[ii] <- P1[ii] <- 0
        }

        npar.var <- sum(c(diag(P1),P1[lower.tri(P1)]))

        A <- M
        A[fix.idx] <- x$fix[fix.idx] ## ... with fixed parameters in plac
        P[covfix.idx] <- x$covfix[covfix.idx] ## ... with fixed parameters in plac

        px <- Jy <- J <- diag(nrow=length(vars(x)))
        if (m>0) {
            J[eta.idx,eta.idx] <- 0; J <- J[-eta.idx,,drop=FALSE]
        } ## Selection matrix (selecting observed variables)
        {
            ## Selection matrix (selection endogenous variables)
            if (length(c(eta.idx,exo.idx))>0) {
                Jy[c(eta.idx,exo.idx),c(eta.idx,exo.idx)] <- 0; Jy <- Jy[-c(eta.idx,exo.idx),,drop=FALSE]
            }
            ## Cancelation matrix (cancels rows with exogenous variables)
            px[exo.idx,exo.idx] <- 0
        }

        ## Creating indicitor of free mean-parameters
        fixed <- sapply(x$mean, function(y) is.numeric(y) & !is.na(y))
        named <- sapply(x$mean, function(y) is.character(y) & !is.na(y))
        mparname <- NULL
        if (length(named)>0)
            mparname <- unlist(unique(x$mean[named]))
        v0 <- rep(1,length(x$mean)) ## Vector of indicators of free mean-parameters

        v0[exo.idx] <- 0
        if (length(fixed)>0) v0[fixed] <- 0;
        v1 <- v0
        for (p in mparname) {
            idx <- which(x$mean==p)
            if (length(idx)>1) {
                v1[idx[-1]] <- 0
            }
            if (p%in%c(parname,covparname,constrain.par))
                v0[idx] <- v1[idx] <- 0
        } ## duplicate parameters

        ###
        ### Extra parameters
        ###
        efixed <- sapply(x$exfix, function(y) is.numeric(y) & !is.na(y))
        enamed <- sapply(x$exfix, function(y) is.character(y) & !is.na(y))
        if(length(enamed)>0){
            eparname <- unlist(unique(x$exfix[enamed]))
        } else{
            eparname <- NULL
        }
        ## Extra parameters
        e0 <- rep(1,length(x$expar)) ## Indicators of free extra par.
        if (length(efixed)>0)
            e0[efixed] <- 0
        e1 <- e0
        for (p in eparname) {
            idx <- which(x$exfix==p)
            if (length(idx)>1) {
                e1[idx[-1]] <- 0
            }
            if (p%in%c(parname,covparname,constrain.par,mparname))
                e0[idx] <- e1[idx] <- 0
        } ## duplicate parameters


        ## Return:
        ## Adjacency-matrix (M)
        ## Matrix of regression-parameters (0,1) _with_ fixed parameters (A)
        ## Matrix of variance-parameters (indicators 0,1) (P)
        ## Manifest selection matrix (J),
        ## Position of variables matrix (Apos),
        ## Position of covariance variables matrix (Ppos),
        ## Position/Indicator matrix of free regression parameters (M0)
        res <- list(vars=allvars, manifest=obs, exogenous=exo, latent=eta,
                    endogenous=endo,
                    exo.idx=exo.idx, eta.idx=eta.idx,
                    exo.obsidx=exo.obsidx, endo.obsidx=endo.obsidx,
                    obs.idx=obs.idx,
                    endo.idx=setdiff(obs.idx,exo.idx))

        if (standard) {
            res <- c(res, list(M=M, A=A, P=P,
                               P0=P0, P1=P1,
                               M0=M0, M1=M1,
                               v0=v0, v1=v1,
                               e0=e0, e1=e1,
                               npar=(npar.reg+npar.var),
                               npar.reg=npar.reg,
                               npar.var=npar.var,
                               npar.mean=sum(v1),
                               npar.ex=sum(e1),
                               constrain.par=constrain.par))
            which.diag <- NULL
            if (length(P1)>0)
                which.diag <- which(diag(P1==1))

            res <- c(res, list(parname.all=parname, parname=setdiff(parname,constrain.par),
                               which.diag=which.diag,
                               covparname.all=covparname,
                               covparname=setdiff(covparname,constrain.par),
                               meanfixed=fixed, meannamed=named,
                               mparname.all=mparname,
                               mparname=setdiff(mparname,constrain.par),
                               eparname.all=eparname,
                               eparname=setdiff(eparname,constrain.par),
                               J=J, Jy=Jy, px=px, sparse=sparse))

            parname.all.reg.idx <- parname.all.reg.tidx <-
                parname.reg.tidx <- parname.reg.idx <- c()
            for (p in res$parname.all) {
                ipos <- which((x$par==p))
                tipos <- which(t(x$par==p))
                if (p%in%res$parname) {
                    parname.reg.idx <- c(parname.reg.idx, list(ipos))
                    parname.reg.tidx <- c(parname.reg.tidx, list(tipos))
                }
                parname.all.reg.idx <- c(parname.all.reg.idx, list(ipos))
                parname.all.reg.tidx <- c(parname.all.reg.tidx, list(tipos))
            };
            if (length(parname.reg.idx)>0) {
                names(parname.reg.idx) <- names(parname.reg.tidx) <- res$parname
            }
            if (length(parname.all.reg.idx)>0) {
                names(parname.all.reg.idx) <- names(parname.all.reg.tidx) <- res$parname.all
            }
            covparname.all.idx <- covparname.idx <- c()
            for (p in res$covparname.all) {
                ipos <- which(x$covpar==p)
                if (p%in%res$covparname)
                    covparname.idx <- c(covparname.idx, list(ipos))
                covparname.all.idx <- c(covparname.all.idx, list(ipos))
            };
            if (length(covparname.idx)>0)
                names(covparname.idx) <- res$covparname
            if (length(covparname.all.idx)>0)
                names(covparname.all.idx) <- res$covparname.all

            mparname.all.idx <- mparname.idx <- c()
            for (p in res$mparname.all) {
                ipos <- which(x$mean==p)
                if (p%in%mparname)
                    mparname.idx <- c(mparname.idx, list(ipos))
                mparname.all.idx <- c(mparname.all.idx, list(ipos))
            };
            if (length(mparname.idx)>0)
                names(mparname.idx) <- res$mparname
            if (length(mparname.all.idx)>0)
                names(mparname.all.idx) <- res$mparname.all

            eparname.all.idx <- eparname.idx <- c()
            for (p in res$eparname.all) {
                ipos <- which(x$exfix==p)
                if (p%in%eparname)
                    eparname.idx <- c(eparname.idx, list(ipos))
                eparname.all.idx <- c(eparname.all.idx, list(ipos))
            };
            if (length(eparname.idx)>0)
                names(eparname.idx) <- res$eparname
            if (length(eparname.all.idx)>0)
                names(eparname.all.idx) <- res$eparname.all


            res <- c(res, list(mparname.idx=mparname.idx,
                               covparname.idx=covparname.idx,
                               parname.reg.idx=parname.reg.idx,
                               parname.reg.tidx=parname.reg.tidx,
                               mparname.all.idx=mparname.all.idx,
                               eparname.all.idx=eparname.all.idx,
                               covparname.all.idx=covparname.all.idx,
                               parname.all.reg.idx=parname.all.reg.idx,
                               parname.all.reg.tidx=parname.all.reg.tidx
                               ))

        } else {
            res <- index(x)
        }

        if (zeroones) {
            if (sparse) {
                if (!requireNamespace("Matrix",quietly=TRUE)) stop("package Matrix not available")
                Ik <- Matrix::Diagonal(length(obs))
                Im <- Matrix::Diagonal(ncol(A))
                Kkk <- NULL
                J <- as(J, "sparseMatrix")
                Jy <- as(Jy, "sparseMatrix")
                px <- as(px, "sparseMatrix")

            } else {
                Ik <- diag(nrow=length(obs))
                Im <- diag(nrow=ncol(A))
            }
            Kkk <- NULL


            res[c("Ik","Im","Kkk")] <- NULL
            res <- c(res, list(Ik=Ik, Im=Im, Kkk=Kkk))
        }
        if (deriv && length(P)>0) {
            if (res$npar.mean>0 & mean)
                D <- deriv.lvm(x,meanpar=rep(1,res$npar.mean),zeroones=TRUE)
            else
                D <- deriv.lvm(x,meanpar=NULL,zeroones=TRUE)
            res[c("dA","dP","dv")] <- NULL
            res <- c(res, list(dA=D$dA, dP=D$dP, dv=D$dv))
        }

        if (length(P)>0)
            res <- c(res,mat.lvm(x,res))

        return(res)
    }
kkholst/lava documentation built on Sept. 6, 2021, 11:36 p.m.