# silva.cotton2.R
# Time-stamp: <26 Sep 2017 14:22:01 c:/x/rpack/agridat/data-raw/silva.cotton.R>
library(asreml)
library(dplyr)
library(kw)
library(lattice)
library(readxl)
library(readr)
library(reshape2)
library(tibble)
setwd("c:/x/rpack/agridat/data-raw/")
dat <- read_csv("silva.cotton.csv")
silva.cotton <- dat
# ----------------------------------------------------------------------------
dat <- silva.cotton
dat$stage <- ordered(dat$stage,
levels=c("vegetative","flowerbud","blossom","boll","bollopen"))
# make stage and defoliation numeric factors
dat <- transform(dat,
stage = factor(stage, levels = unique(stage),
labels = 1:nlevels(stage)))
# sum data across plants, 1 pot = 2 plants
dat <- aggregate(cbind(weight,height,bolls,nodes) ~
stage+defoliation+rep, data=dat, FUN=sum)
# all traits, plant-level data
if(require(latticeExtra)){
foo <- xyplot(weight + height + bolls + nodes ~ defoliation | stage,
data = dat, outer=TRUE,
xlab="Defoliation percent", ylab="", main="silva.cotton",
as.table = TRUE, jitter.x = TRUE, type = c("p", "smooth"),
scales = list(y = "free"))
combineLimits(useOuterStrips(foo))
}
\dontrun{
# glm with quadratic effect for defoliation
m0 <- glm(bolls ~ 1, data=dat, family=poisson)
m1 <- glm(bolls ~ defoliation+I(defoliation^2), data=dat, family=poisson)
m2 <- glm(bolls ~ stage:defoliation+I(defoliation^2), data=dat, family=poisson)
m3 <- glm(bolls ~ stage:(defoliation+I(defoliation^2)), data=dat, family=poisson)
par(mfrow=c(2,2)); plot(m3); layout(1)
anova(m0, m1, m2, m3, test="Chisq")
# predicted values
preddat <- expand.grid(stage=levels(dat$stage),
defoliation=seq(0,100,length=20))
preddat$pred <- predict(m3, newdata=preddat, type="response")
# Zeviani figure 3
require(latticeExtra)
xyplot(bolls ~ jitter(defoliation)|stage, dat,
as.table=TRUE,
main="silva.cotton - observed and model predictions",
xlab="Defoliation percent",
ylab="Number of bolls") +
xyplot(pred ~ defoliation|stage, data=preddat,
as.table=TRUE,
type='smooth', col="black", lwd=2)
}
\dontrun{
# ----- mcglm -----
dat <- transform(dat, deffac=factor(defoliation))
library(car)
library(candisc)
library(doBy)
library(multcomp)
library(mcglm)
library(Matrix)
vars <- c("weight","height","bolls","nodes")
splom(~dat[vars], data=dat,
groups = stage,
auto.key = list(title = "Growth stage",
cex.title = 1,
columns = 3),
par.settings = list(superpose.symbol = list(pch = 4)),
as.matrix = TRUE)
splom(~dat[vars], data=dat,
groups = defoliation,
auto.key = list(title = "Artificial defoliation",
cex.title = 1,
columns = 3),
as.matrix = TRUE)
# multivariate linear model.
m1 <- lm(cbind(weight, height, bolls, nodes) ~ stage * deffac,
data = dat)
anova(m1)
summary.aov(m1)
r0 <- residuals(m1)
# Checking the models assumptions on the residuals.
car::scatterplotMatrix(r0,
gap = 0, smooth = FALSE, reg.line = FALSE, ellipse = TRUE,
diagonal = "qqplot")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.