# Option 1: absolute cases per day by age group/vac strategy
fig1a <- ggplot(data = all_res_for_plot_sum %>%
filter(#scenario_id == "Vaccination in 5+",
#age_group2 == "10-19 years",
date >= as.Date("2021-11-01"),
#date <= as.Date("2021-12-31"),
outcome == "Daily Cases"),
aes(x = date, y = mean/1000, fill = scenario_id, linetype = scenario_id)) +
geom_ribbon(aes(ymin = q025/1000, ymax = q975/1000, fill = scenario_id), alpha = 0.1) +
geom_line(aes(color = scenario_id), size = 1) +
scale_linetype_manual(values = c("dotted", "dashed", "solid")) +
labs(y = "Cases (in thousands)", x = "Date of infection") +
ylim(0,NA) +
scale_x_date(date_breaks = "2 weeks", date_labels = "%d %b %Y") +
theme(legend.position = "bottom",
panel.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1, size = 14),
axis.text.y = element_text(size = 14),
strip.text.x = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
legend.box="vertical",
axis.title=element_text(size=14, face="bold")) +
facet_wrap(~age_group2, nrow = 3,
scales = "free_y"
) +
guides(fill=guide_legend("Scenario"),
colour = guide_legend("Scenario"),
linetype = guide_legend("Scenario"))
fig1a
ggsave(filename = "/rivm/s/ainsliek/results/impact_vac/resubmission/figure1_absolute_number.pdf",
plot = fig1a, units = "in", height = 10, width = 12, dpi = 300)
# Option 3: cases in total pop by vac strategy
fig1c <- ggplot(data = all_res_total %>%
filter(#scenario_id == "Vaccination in 5+",
#age_group2 == "10-19 years",
date >= as.Date("2021-11-01"),
#date <= as.Date("2021-12-31"),
outcome == "Daily Cases"),
aes(x = date, y = (mean/pop_size)*100000, fill = scenario_id, linetype = scenario_id)) +
geom_ribbon(aes(ymin = (q025/pop_size)*100000, ymax = (q975/pop_size)*100000, fill = scenario_id), alpha = 0.1) +
geom_line(aes(color = scenario_id), size = 1) +
scale_linetype_manual(values = c("dotted", "dashed", "solid")) +
labs(y = "Cases per 100,000 people", x = "Date of infection") +
ylim(0,NA) +
scale_x_date(date_breaks = "2 weeks", date_labels = "%d %b %Y") +
theme(legend.position = "bottom",
panel.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1, size = 14),
axis.text.y = element_text(size = 14),
strip.text.x = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
legend.box="vertical",
axis.title=element_text(size=14, face="bold")) +
#facet_wrap(~age_group2, nrow = 3) +
guides(fill=guide_legend("Scenario"),
colour = guide_legend("Scenario"),
linetype = guide_legend("Scenario"))
fig1c
ggsave(filename = "/rivm/s/ainsliek/results/impact_vac/resubmission/figure1_per100k_total.pdf",
plot = fig1c, units = "in", height = 10, width = 12, dpi = 300)
# Figure 1 (inset) ------------------------------------------
# bar plot of percent difference ----------------------------
# fig1_inset <- ggplot(data = table1a %>%
# filter(Scenario != "Vaccination of 18+"),
# aes(x = outcome, y = abs(perc_diff), fill = age_group2)) +
# geom_bar(stat = "Identity", position = position_dodge()) +
# geom_errorbar(aes(ymin = abs(perc_diff_upper), ymax = abs(perc_diff_lower), width = 0.2),
# position = position_dodge(0.9)) +
# labs(x = "", y = "Percent Reduction (%)", fill = "Age Group") +
# scale_x_discrete(labels = c("Daily\nCases", "Hospital\nAdmissions", "IC\n Admissions")) +
# facet_wrap(~Scenario, nrow = 2) +
# theme(legend.position = "bottom",
# panel.background = element_blank(),
# axis.text.x = element_text(size = 12), #angle = 45, hjust = 1,
# axis.text.y = element_text(size = 14),
# strip.text.x = element_text(size = 14),
# legend.text = element_text(size = 14),
# legend.title = element_text(size = 14),
# axis.title=element_text(size=14,face = "bold")) +
# guides(fill=guide_legend(nrow=2,byrow=TRUE))
# fig1_inset
#
# fig1 <- fig1a + annotation_custom(ggplotGrob(fig1_inset),
# xmin = as.Date("2022-02-01"), xmax = as.Date("2022-04-04"),
# ymin = 15000, ymax = 100000)
# fig1
# save output -------------------------------------------------
# ggsave(filename = "/rivm/s/ainsliek/results/impact_vac/figure_1_w_inset.pdf", plot = fig1,
# units = "in", height = 10, width = 12, dpi = 300)
# all_res_for_plot_tot_pop <- all_res_for_plot %>%
# group_by(scenario_id, outcome, date, sample) %>%
# summarise(sum = sum(value)) %>%
# ungroup() %>%
# group_by(scenario_id, outcome, date) %>%
# summarise(mean = mean(sum),
# q025 = quantile(sum, probs = 0.025),
# q25 = quantile(sum, probs = 0.25),
# q75 = quantile(sum, probs = 0.75),
# q975 = quantile(sum, probs = 0.975)
# ) %>%
# select(date, scenario_id, outcome, mean:q975)
#
# fig1_tot_pop <- ggplot(data = all_res_for_plot_tot_pop %>%
# filter(#scenario_id == "Vaccination in 12+",
# #age_group2 == "10-19 years",
# #date < as.Date("2021-11-01"),
# outcome == "Daily Cases"),
# aes(x = date, y = mean, linetype = scenario_id)) +
# geom_ribbon(aes(ymin = q025, ymax = q975), alpha = 0.3) +
# geom_line(#aes(color = age_group2),
# size = 1) +
# scale_linetype_manual(values = c("dotted", "dashed", "solid")) +
# labs(y = "Cases per day", x = "Date of infection") +
# ylim(0,NA) +
# scale_x_date(date_breaks = "2 weeks", date_labels = "%d %b %Y") +
# theme(legend.position = "bottom",
# panel.background = element_blank(),
# axis.text.x = element_text(angle = 45, hjust = 1, size = 14),
# axis.text.y = element_text(size = 14),
# strip.text.x = element_text(size = 14),
# legend.text = element_text(size = 14),
# legend.title = element_text(size = 14),
# legend.box="vertical",
# axis.title=element_text(size=14,face="bold")) +
# guides(#fill=guide_legend("Age Group"),
# colour = guide_legend("Age Group"),
# linetype = guide_legend("Strategy"))
# fig1_tot_pop
# make plots -------------------------------------------------------------------
all_res_for_plot <- df_all %>%
ungroup() %>%
mutate(
outcome = factor(case_when(
target_variable == "inc infection" ~ "Daily Infections",
target_variable == "inc case" ~ "Daily Cases",
target_variable == "inc hosp" ~ "Hospital Admissions",
target_variable == "inc icu" ~ "IC Admissions",
target_variable == "inc death" ~ "Daily Deaths"
), levels = c("Daily Infections", "Daily Cases", "Hospital Admissions", "IC Admissions", "Daily Deaths")),
age_group2 = case_when(
age_group == 1 ~ "0-9 years",
age_group == 2 ~ "10-19 years",
age_group %in% c(3:9) ~ ">19 years"
),
age_group2 = factor(age_group2, levels = c("0-9 years", "10-19 years", ">19 years")),
age_group = case_when(
age_group == 1 ~ "0-9",
age_group == 2 ~ "10-19",
age_group == 3 ~ "20-29",
age_group == 4 ~ "30-39",
age_group == 5 ~ "40-49",
age_group == 6 ~ "50-59",
age_group == 7 ~ "60-69",
age_group == 8 ~ "70-79",
age_group == 9 ~ "80+"
),
scenario_id = factor(scenario_id, levels = c("Vaccination in 5+",
"Vaccination in 12+",
"Vaccination in 18+"))
)
# Figure 2: summarise by age_group levels --------------------------------------
dat_fig2 <- all_res_for_plot %>%
group_by(scenario_id, outcome, date, sample, age_group) %>%
summarise(sum = sum(value)) %>%
ungroup() %>%
group_by(scenario_id, outcome, date, age_group) %>%
summarise(mean = mean(sum),
q025 = quantile(sum, probs = 0.025),
q25 = quantile(sum, probs = 0.25),
q75 = quantile(sum, probs = 0.75),
q975 = quantile(sum, probs = 0.975)
) %>%
select(date, scenario_id, age_group, outcome, mean:q975) %>%
# calculate cases per 100,000 people
mutate(pop_size = case_when(
age_group == "0-9" ~ n_vec[1],
age_group == "10-19" ~ n_vec[2],
age_group == "20-29" ~ n_vec[3],
age_group == "30-39" ~ n_vec[4],
age_group == "40-49" ~ n_vec[5],
age_group == "50-59" ~ n_vec[6],
age_group == "60-69" ~ n_vec[7],
age_group == "70-79" ~ n_vec[8],
age_group == "80+" ~ n_vec[9],
))
aaas_cols <- pal_aaas("default")(3)
my_colors <- c(aaas_cols[3], aaas_cols[2], gray.colors(7, start = 0.2, end = 0.8))
fig2 <- ggplot(data = dat_fig2 %>%
filter(#scenario_id == "Vaccination in 5+",
#age_group2 == "10-19 years",
date >= as.Date("2021-11-01"),
#date <= as.Date("2021-12-31"),
outcome == "Daily Cases"),
aes(x = date, y = mean, fill = age_group)) +
geom_ribbon(aes(ymin = q025, ymax = q975, fill = age_group), alpha = 0.3) +
geom_line(aes(color = age_group)) +
scale_fill_manual(values = my_colors) +
scale_color_manual(values = my_colors) +
labs(y = "Daily Cases", x = "Date") +
ylim(0,NA) +
scale_x_date(date_breaks = "2 weeks", date_labels = "%d %b %Y") +
guides(fill = guide_legend("Age Group"), color = guide_legend("Age Group")) +
theme(legend.position = "bottom",
panel.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1, size = 14),
axis.text.y = element_text(size = 14),
strip.text.x = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
axis.title=element_text(size=14,face="bold")) +
facet_grid(scenario_id~., scales = "free_y")
fig2
ggsave(filename = paste0(save_path, "figure2_new_color_palette.jpg"), plot = fig3,
units = "in", height = 8, width = 12, dpi = 300)
# -------------------------------------------------------------
# b) hosp and IC admissions is supplemental figure
dat_figS4 <- all_res_for_plot %>%
filter(outcome %in% c("Hospital Admissions", "IC Admissions"),
Immunity == "No Waning",
date >= as.Date("2021-11-01")) %>%
group_by(Immunity, Scenario, date, age_group, outcome) %>%
summarise_at(.vars = c("mle", "lower", "upper"), .funs = "sum")
figS4 <- ggplot(data = dat_figS4,
aes(x = date, y = mle, fill = age_group)) +
geom_ribbon(aes(ymin = lower, ymax = upper, fill = age_group), alpha = 0.3) +
geom_line(aes(color = age_group)) +
scale_fill_manual(values = my_colors) +
scale_color_manual(values = my_colors) +
labs(y = "Value", x = "Date") +
ylim(0,NA) +
scale_x_date(date_breaks = "2 weeks", date_labels = "%d %b %Y") +
guides(fill = guide_legend("Age Group"), color = guide_legend("Age Group")) +
theme(legend.position = "bottom",
panel.background = element_blank(),
axis.text.x = element_text(angle = 45, hjust = 1, size = 14),
axis.text.y = element_text(size = 14),
strip.text.x = element_text(size = 14),
legend.text = element_text(size = 14),
legend.title = element_text(size = 14),
axis.title=element_text(size=14,face="bold")) +
facet_grid(outcome~Scenario, scales = "free_y")
figS4
# add text annotation
# figS4 +
# annotate(
# geom = "curve", x = as.Date("2022-03-07"), y = 500, xend = as.Date("2022-02-01"), yend = 400,
# curvature = .3, arrow = arrow(length = unit(2, "mm"))
# ) +
# annotate(geom = "text", x = as.Date("2022-03-08"), y = 500, label = "", hjust = "left")
# ggsave(filename = paste0(save_path, "figureS4.jpg"), plot = figS4,
# units = "in", height = 8, width = 12, dpi = 300)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.