Description Usage Arguments Value Examples
View source: R/network_analysis.R
xina_enrichment conducts functional enrichment tests using gene ontology or KEGG pathway terms for a given protein list
1 2 | xina_enrichment(string_db, protein_list, enrichment_type = "GO",
pval_threshold = 0.05, methodMT = "fdr")
|
string_db |
STRINGdb object |
protein_list |
A vector of gene names to draw protein-protein interaction network. |
enrichment_type |
A functional annotation for the enrichment test. 'enrichment_type' should be one of 'GO' and 'KEGG', |
pval_threshold |
P-value threshold to get significantly enriched terms from the given proteins |
methodMT |
Method for p-value adjustment. See get_enrichment. Default is 'fdr'. |
A list of data frames containing enrichment results
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | ## Not run:
library(STRINGdb)
library(Biobase)
# load XINA example data
data(xina_example)
# Get STRING database for protein-protein intereaction information
string_db <- STRINGdb$new( version="10", species=9606, score_threshold=0, input_directory="" )
string_db
# XINA analysis with STRING DB
xina_result <- xina_analysis(example_clusters, string_db)
# Select proteins that showed cluster #1 in the Stimulus2 condition
subgroup <- subset(example_clusters$aligned, Stimulus2==1)
protein_list <- as.vector(subgroup$`Gene name`)
# Enrichment test using KEGG pathway terms that have adjuseted p-value less than 0.1
kegg_enriched <- xina_enrichment(string_db, protein_list,
enrichment_type = "KEGG", pval_threshold=0.1)
plot_enrichment_results(kegg_enriched$KEGG, num_terms=10)
# Enrichment test using GO terms that have adjuseted p-value less than 0.1
go_enriched <- xina_enrichment(string_db, protein_list,
enrichment_type = "GO", pval_threshold=0.1)
plot_enrichment_results(go_enriched$Component, num_terms=10)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.