#' Get univariate normal marginal distribution
#' from an HMM.
#'
#' @param start Smallest value in range.
#' @param end Largest value in range.
#' @param n
#' @param mod List of HMM parameters
#' @param stationary Boolean, whether the HMM is stationary or not
#'
#' @return Dataframe
#' @export
#'
#' @examples
norm_marginal <- function(start, end, n, mod, stationary) {
if (stationary){
delta <- solve(t(diag(mod$m) - mod$gamma + 1), rep(1, mod$m))
}
else{
delta <- mod$delta
}
x <- seq(start, end, length.out = n)
mnorm <- delta[1] * dnorm(x, mean = mod$mu[1], sd = mod$sigma[1])
for (i in 2:mod$m) {
mnorm <- mnorm + delta[i] * dnorm(x, mean = mod$mu[i], sd = mod$sigma[i])
}
return(data_frame(x = x, mnorm = mnorm))
}
#' Transform normal natural parameters to working parameters
#'
#' mu does not need to be transformed, as there are no constraints.
#'
#' @param m Number of states
#' @param mu Vector of length m, containing means for each
#' state dependent normal distribution
#' @param sigma Vector of length m, containing standard
#' deviations for each state dependent normal distribution
#' @param gamma Transition probabiilty matrix, size m x m
#' @param delta Optional, vector of length m containing
#' initial distribution
#' @param stationary Boolean, whether the HMM is stationary or not
#'
#' @return Vector of working parameters
#' @export
#'
#' @examples
norm_hmm_pn2pw <- function(m, mu, sigma, gamma,
delta = NULL, stationary = TRUE) {
tsigma <- log(sigma)
foo <- log(gamma / diag(gamma))
tgamma <- as.vector(foo[!diag(m)])
if (stationary) {
tdelta <- NULL
}
else {
tdelta <- log(delta[-1] / delta[1])
}
parvect <- c(mu, tsigma, tgamma, tdelta)
return(parvect)
}
#' Transform normal working parameters to natural parameters
#'
#' @param parvect Vector of working parameters
#' @inheritParams norm_hmm_pn2pw
#'
#' @return List of natural parameters mu, sigma, gamma, delta
#' @export
#'
#' @examples
norm_hmm_pw2pn <- function(m, parvect, stationary = TRUE) {
mu <- parvect[1:m]
sigma <- exp(parvect[(m + 1):(2 * m)])
gamma <- diag(m)
gamma[!gamma] <- exp(parvect[(2 * m + 1):(m + m * m)])
gamma <- gamma / apply(gamma, 1, sum)
if (stationary) {
delta <- solve(t(diag(m) - gamma + 1), rep(1, m))
}
else {
foo <- c(1, exp(parvect[(m + m * m + 1):(m * m + 2 * m - 1)]))
delta <- foo / sum(foo)
}
return(list(mu = mu, sigma = sigma, gamma = gamma, delta = delta))
}
#' Get negative log-likelihood from the working parameters
#'
#' @param x Vector of observations
#' @inheritParams norm_hmm_pn2pw
#'
#' @return Negative log-likelihood
#' @export
#'
#' @examples
norm_hmm_mllk <- function(parvect, x, m, stationary = TRUE) {
n <- length(x)
pn <- norm_hmm_pw2pn(m, parvect, stationary = stationary)
p <- norm_densities(x, pn, m, n)
foo <- matrix(pn$delta, ncol = m)
lscale <- foralg(n, m, foo, pn$gamma, p)
mllk <- -lscale
return(mllk)
}
#' Returns normal densities
#'
#' @inheritParams norm_hmm_mllk
#' @param mod List of HMM parameters
#' @param n Number of observations
#'
#' @return Matrix of normal densities, dimensions n x m
#' @export
#'
#' @examples
norm_densities <- function(x, mod, m, n) {
p <- matrix(nrow = n, ncol = m)
for (i in 1:n) {
p[i, ] <- dnorm(x[i], mod$mu, mod$sigma)
}
return(p)
}
#' Maximum likelihood estimation of univariate normal parameters
#'
#' @param mu0 Vector of length m, initial values for means
#' @param sigma0 Vector of length m, initial values for standard deviations
#' @param gamma0 Matrix of size m x m, initial values for transition probability matrix
#' @param delta0 Optional, vector of length m, initial values for
#' initial distribution
#' @param hessian Boolean, whether to return the inverse hessian
#' @inheritParams norm_hmm_mllk
#'
#' @return List of results
#' @export
#'
#' @examples
norm_hmm_mle <- function(x, m, mu0, sigma0, gamma0,
delta0 = NULL, stationary = TRUE,
hessian = FALSE) {
parvect0 <- norm_hmm_pn2pw(m, mu0, sigma0, gamma0, delta0,
stationary = stationary)
mod <- nlm(norm_hmm_mllk, parvect0, x = x, m = m,
stationary = stationary,
hessian = hessian)
pn <- norm_hmm_pw2pn(m, mod$estimate,
stationary = stationary)
mllk <- mod$minimum
np <- length(parvect0)
aic <- 2 * (mllk + np)
n <- sum(!is.na(x))
bic <- 2 * mllk + np * log(n)
if (hessian) {
return(list(
m = m, mu = pn$mu, sigma = pn$sigma,
gamma = pn$gamma, delta = pn$delta,
code = mod$code, mllk = mllk,
aic = aic, bic = bic, hessian = mod$hessian, np = np
))
}
else {
return(list(
m = m, mu = pn$mu, sigma = pn$sigma, gamma = pn$gamma, delta = pn$delta,
code = mod$code, mllk = mllk, aic = aic, bic = bic
))
}
}
#' Generate sample from HMM with normal distribution
#'
#' @param ns Sample size
#' @param mod List of HMM parameters
#'
#' @return Dataframe including index, state, obs
#' @export
#'
#' @examples
norm_hmm_generate_sample <- function(ns, mod) {
mvect <- 1:mod$m
state <- numeric(ns)
state[1] <- sample(mvect, 1, prob = mod$delta)
for (i in 2:ns) state[i] <- sample(mvect, 1, prob = mod$gamma[state[i - 1], ])
x <- rnorm(ns, mean = mod$mu[state], sd = mod$sigma[state])
return(data_frame(index = c(1:ns), state = state, obs = x))
}
#' Global decoding of states
#'
#' @param x Vector of observations
#' @param mod List of maximum likelihood estimation results
#'
#' @return Dataframe of decoded states and index
#' @export
#'
#' @examples
norm_hmm_viterbi <- function(x, mod) {
n <- length(x)
xi <- matrix(0, n, mod$m)
foo <- mod$delta * dnorm(x[1], mod$mu, mod$sigma)
xi[1, ] <- foo / sum(foo)
for (t in 2:n) {
foo <- apply(xi[t - 1, ] * mod$gamma, 2, max) *
dnorm(x[t], mod$mu, mod$sigma)
xi[t, ] <- foo / sum(foo)
}
iv <- numeric(n)
iv[n] <- which.max(xi[n, ])
for (t in (n - 1):1) {
iv[t] <- which.max(mod$gamma[, iv[t + 1]] * xi[t, ])
}
return(data_frame(index = 1:n, state = iv))
}
#' Get forward probabilities
#'
#' @inheritParams norm_hmm_viterbi
#'
#' @return Matrix of forward probabilities
#' @export
#'
#' @examples
norm_hmm_lforward <- function(x, mod) {
n <- length(x)
lalpha <- matrix(NA, mod$m, n)
foo <- mod$delta * dnorm(x[1], mod$mu, mod$sigma)
sumfoo <- sum(foo)
lscale <- log(sumfoo)
foo <- foo / sumfoo
lalpha[, 1] <- lscale + log(foo)
for (i in 2:n) {
foo <- foo %*% mod$gamma * dnorm(x[i], mod$mu, mod$sigma)
sumfoo <- sum(foo)
lscale <- lscale + log(sumfoo)
foo <- foo / sumfoo
lalpha[, i] <- log(foo) + lscale
}
return(lalpha)
}
#' Get backward probabilities
#'
#' @inheritParams norm_hmm_viterbi
#'
#' @return Matrix of backward probabilities
#' @export
#'
#' @examples
norm_hmm_lbackward <- function(x, mod) {
n <- length(x)
m <- mod$m
lbeta <- matrix(NA, m, n)
lbeta[, n] <- rep(0, m)
foo <- rep(1 / m, m)
lscale <- log(m)
for (i in (n - 1):1) {
foo <- mod$gamma %*% (dnorm(x[i + 1], mod$mu, mod$sigma) * foo)
lbeta[, i] <- log(foo) + lscale
sumfoo <- sum(foo)
foo <- foo / sumfoo
lscale <- lscale + log(sumfoo)
}
return(lbeta)
}
#' Generate pseudo residuals
#'
#' @inheritParams norm_hmm_viterbi
#' @param type Type of pseudo-residual, either "ordinary" or "forecast"
#' @param stationary Boolean, whether the HMM is stationary or not
#'
#' @return Dataframe of pseudo-residuals, observations, index
#' @export
#'
#' @examples
norm_hmm_pseudo_residuals <- function(x, mod, type, stationary) {
if (stationary) {
delta <- solve(t(diag(mod$m) - mod$gamma + 1), rep(1, mod$m))
}
else {
delta <- mod$delta
}
if (type == "ordinary") {
n <- length(x)
la <- norm_hmm_lforward(x, mod)
lb <- norm_hmm_lbackward(x, mod)
lafact <- apply(la, 2, max)
lbfact <- apply(lb, 2, max)
p <- matrix(NA, n, mod$m)
for (i in 1:n) {
p[i, ] <- pnorm(x[i], mean = mod$mu, sd = mod$sigma)
}
npsr <- rep(NA, n)
npsr[1] <- qnorm(delta %*% p[1, ])
for (i in 2:n) {
a <- exp(la[, i - 1] - lafact[i])
b <- exp(lb[, i] - lbfact[i])
foo <- (a %*% mod$gamma) * b
foo <- foo / sum(foo)
npsr[i] <- qnorm(foo %*% p[i, ])
}
return(data_frame(npsr, x, index = c(1:n)))
}
else if (type == "forecast") {
n <- length(x)
la <- norm_hmm_lforward(x, mod)
p <- matrix(NA, n, mod$m)
for (i in 1:n) {
p[i, ] <- pnorm(x[i], mean = mod$mu, sd = mod$sigma)
}
npsr <- rep(NA, n)
npsr[1] <- qnorm(delta %*% p[1, ])
for (i in 2:n) {
la_max <- max(la[, i - 1])
a <- exp(la[, i - 1] - la_max)
npsr[i] <- qnorm(t(a) %*% (mod$gamma / sum(a)) %*% p[i, ])
}
return(data_frame(npsr, x, index = c(1:n)))
}
}
#' Get inverse of hessian matrix
#'
#' Transform hessian associated with working parameters
#' outputted by nlm.
#' If not stationary, exclude values associated with delta parameter
#' from the hessian matrix.
#'
#'
#' @param mod List of maximum likelihood estimation results
#' @param stationary Boolean, whether the HMM is stationary or not
#'
#' @return Inverse hessian matrix
#' @export
#'
#' @examples
norm_inv_hessian <- function(mod, stationary = TRUE){
if (!stationary) {
np2 <- mod$np - mod$m + 1
h <- mod$hessian[1:np2, 1:np2]
}
else {
np2 <- mod$np
h <- mod$hessian
}
h <- solve(h)
jacobian <- norm_jacobian(mod, np2)
h <- t(jacobian) %*% h %*% jacobian
return(h)
}
#' Get Jacobian matrix
#'
#' @param mod List of maximum likelihood estimation results
#' @param n Total number of working parameters (excluding delta)
#'
#' @return Jacobian matrix, size n x n
#' @export
#'
#' @examples
norm_jacobian <- function(mod, n) {
m <- mod$m
jacobian <- matrix(0, nrow = n, ncol = n)
jacobian[1:m, 1:m] <- diag(m)
jacobian[(m + 1):(2 * m), (m + 1):(2 * m)] <- diag(mod$sigma)
count <- 0
for (i in 1:m) {
for (j in 1:m) {
if (j != i) {
count <- count + 1
foo <- -mod$gamma[i, j] * mod$gamma[i, ]
foo[j] <- mod$gamma[i, j] * (1 - mod$gamma[i, j])
foo <- foo[-i]
jacobian[2 * m + count,
(2 * m + (i - 1) * (m - 1) + 1):(2 * m + i * (m - 1))] <- foo
}
}
}
return(jacobian)
}
#' Get bootstrapped estimates of parameters
#'
#' @param mod List of maximum likelihood estimation results
#' @param n Number of bootstrap samples
#' @param len Number of observations
#' @param stationary Boolean, whether the HMM is stationary or not
#'
#' @return List of estimates
#' @export
#'
#' @examples
norm_bootstrap_estimates <- function(mod, n, len, stationary) {
m <- mod$m
mu_estimate <- numeric(n * m)
sigma_estimate <- numeric(n * m)
gamma_estimate <- numeric(n * m * m)
delta_estimate <- numeric(n * m)
for (i in 1:n) {
sample <- norm_hmm_generate_sample(len, mod)
mod2 <- norm_hmm_mle(sample$obs, m, mod$mu, mod$sigma, mod$gamma,
mod$delta, stationary = stationary, hessian = FALSE)
mu_estimate[((i - 1) * m + 1):(i * m)] <- mod2$mu
sigma_estimate[((i - 1) * m + 1):(i * m)] <- mod2$sigma
gamma_estimate[((i - 1) * m * m + 1):(i * m * m)] <- mod2$gamma
delta_estimate[((i - 1) * m + 1):(i * m)] <- mod2$delta
}
return(list(mu = mu_estimate, sigma = sigma_estimate,
gamma = gamma_estimate, delta = delta_estimate))
}
#' Estimate covariance matrix of parameters from bootstrap estimates
#'
#' @param bootstrap List of bootstrap estimates of parameters
#' @param m Number of states
#' @param n Number of bootstrap samples
#'
#' @return Estimate of covariance matrix of parameters
#' @export
#'
#' @examples
norm_bootstrap_covariance <- function(bootstrap, m, n) {
size <- (m + 3) * m
cov <- matrix(rep(0, size * size), size)
foo <- rep(0, size)
for (i in 1:n) {
estimates <- c(bootstrap$mu[((i - 1) * m + 1):(i * m)],
bootstrap$sigma[((i - 1) * m + 1):(i * m)],
bootstrap$gamma[((i - 1) * m * m + 1):(i * m * m)],
bootstrap$delta[((i - 1) * m + 1):(i * m)])
foo <- foo + estimates
}
foo <- foo / n
for (i in 1:n) {
estimates <- c(bootstrap$mu[((i - 1) * m + 1):(i * m)],
bootstrap$sigma[((i - 1) * m + 1):(i * m)],
bootstrap$gamma[((i - 1) * m * m + 1):(i * m * m)],
bootstrap$delta[((i - 1) * m + 1):(i * m)])
cov <- cov + ((estimates - foo) %o% (estimates - foo))
}
cov <- cov / (n - 1)
return(cov)
}
#' Confidence intervals for estimated parameters by bootstrapping
#'
#' @param mod Maximum likelihood estimates of parameters
#' @param bootstrap Bootstrapped estimates for parameters
#' @param alpha Confidence level
#' @param m Number of states
#'
#' @return List of lower and upper bounds for confidence intervals
#' for each parameter
#' @export
#'
#' @examples
norm_bootstrap_ci <- function(mod, bootstrap, alpha, m) {
mu_lower <- rep(NA, m)
mu_upper <- rep(NA, m)
sigma_lower <- rep(NA, m)
sigma_upper <- rep(NA, m)
gamma_lower <- rep(NA, m * m)
gamma_upper <- rep(NA, m * m)
delta_lower <- rep(NA, m)
delta_upper <- rep(NA, m)
bootstrap1 <- data_frame(mu = bootstrap$mu,
sigma = bootstrap$sigma,
delta = bootstrap$delta)
bootstrap2 <- data_frame(gamma = bootstrap$gamma)
for (i in 1:m) {
if (i == m) {
foo <- bootstrap1 %>% dplyr::filter((row_number() %% m) == 0)
}
else {
foo <- bootstrap1 %>% dplyr::filter((row_number() %% m) == i)
}
mu_lower[i] <- 2 * mod$mu[i] -
quantile(foo$mu, 1 - (alpha / 2), names = FALSE)
mu_upper[i] <- 2 * mod$mu[i] -
quantile(foo$mu, alpha / 2, names = FALSE)
sigma_lower[i] <- 2 * mod$sigma[i] -
quantile(foo$sigma, 1 - (alpha / 2), names = FALSE)
sigma_upper[i] <- 2 * mod$sigma[i] -
quantile(foo$sigma, alpha / 2, names = FALSE)
delta_lower[i] <- 2 * mod$delta[i] -
quantile(foo$delta, 1 - (alpha / 2), names = FALSE)
delta_upper[i] <- 2 * mod$delta[i] -
quantile(foo$delta, alpha / 2, names = FALSE)
}
for (i in 1:(m * m)) {
if (i == (m * m)) {
foo <- bootstrap2 %>% dplyr::filter((row_number() %% (m * m)) == 0)
}
else {
foo <- bootstrap2 %>% dplyr::filter((row_number() %% (m * m)) == i)
}
gamma_lower[i] <- 2 * mod$gamma[i] -
quantile(foo$gamma, 1 - (alpha / 2), names = FALSE)
gamma_upper[i] <- 2 * mod$gamma[i] -
quantile(foo$gamma, alpha / 2, names = FALSE)
}
return(list(
mu_lower = mu_lower, mu_upper = mu_upper,
sigma_lower = sigma_lower, sigma_upper = sigma_upper,
gamma_lower = gamma_lower, gamma_upper = gamma_upper,
delta_lower = delta_lower, delta_upper = delta_upper
))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.