#' ellipsoid_selection: Performs variable selection for ellipsoid models
#'
#' @description Performs variable selection for ellipsoid models according to omission rates in the environmental space.
#' @param env_train A data frame with the environmental training data.
#' @param env_test A data frame with the environmental testing data. The default is NULL if given the selection process will show the p-value of a binomial test.
#' @param env_vars A vector with the names of environmental variables to be used in the selection process.
#' @param nvarstest A vector indicating the number of variables to fit the ellipsoids during model selection. It is allowed to test models with a different number of variables (i.e. nvarstest=c(3,6)).
#' @param level Proportion of points to be included in the ellipsoids. This parameter is equivalent to the error (E) proposed by Peterson et al. (2008).
#' @param mve A logical value. If TRUE a minimum volume ellipsoid will be computed using
#' the function \code{\link[MASS]{cov.rob}} of the \pkg{MASS} package. If False the covariance matrix of the input data will be used.
#' @param omr_criteria Omission rate criteria. Value of the omission rate allowed for the selection process. Default NULL see details.
#' @param env_bg Environmental data to compute the approximated prevalence of the model. The data should be a sample of the environmental layers of the calibration area.
#' @param parallel The computations will be run in parallel. Default FALSE
#' @param ncores The number of cores that will be used for the parallel process. By default ntbox will use the total number of available cores less one.
#' @param proc Logical if TRUE a partial roc test will be run.
#' @param proc_iter Numeric. The total number of iterations for the partial ROC bootstrap.
#' @param rseed Logical. Whether or not to set a random seed for partial roc bootstrap. Default TRUE.
#' @param comp_each Number of models to run in each job in the parallel computation. Default 100
#' @return A data.frame with 5 columns: i) "fitted_vars" the names of variables that were fitted; ii) "om_rate" omission rates of the model; iii) "bg_prevalence" approximated prevalence of the model see details section; iv) The rank value of importance in model selection by omission rate; v) The rank value by prevalence after if the value of omr_criteria is passed.
#' @details Model selection occurs in environmental space (E-space). For each variable combination the omission rate (omr) in E-space is computed using the function \code{\link[ntbox]{inEllipsoid}}. The results will be ordered by omr and if the user-specified the environmental background "env_bg" an estimated prevalence will be computed and the results will be ordered also by "bg_prevalence".
#'
#' The number of variables to construct candidate models can be specified by the user in the parameter "nvarstest". Model selection will be run in parallel if the user-specified more than one set of combinations and the total number of models to be tested is greater than 500.
#' If given"omr_criteria" and "bg_prevalence", the results will be shown pondering those models that met the "omr_criteria" by the value of "bg_prevalence".
#' For more details and examples go to \code{\link[ntbox]{ellipsoid_omr}} help.
#' @export
#' @import future
#' @author Luis Osorio-Olvera <luismurao@gmail.com>
#' @references Peterson, A.T. et al. (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell., 213, 63–72.
#' @examples
#' \dontrun{
#' # Bioclimatic layers path
#' wcpath <- list.files(system.file("extdata/bios",
#' package = "ntbox"),
#' pattern = ".tif$",full.names = TRUE)
#' # Bioclimatic layers
#' wc <- raster::stack(wcpath)
#' # Occurrence data for the giant hummingbird (Patagona gigas)
#' pg <- utils::read.csv(system.file("extdata/p_gigas.csv",
#' package = "ntbox"))
#' # Split occs in train and test
#' pgL <- base::split(pg,pg$type)
#' pg_train <- pgL$train
#' pg_test <- pgL$test
#' # Environmental data for training and testing
#' pg_etrain <- raster::extract(wc,pg_train[,c("longitude",
#' "latitude")],
#' df=TRUE)
#' pg_etrain <- pg_etrain[,-1]
#' pg_etest <- raster::extract(wc,pg_test[,c("longitude",
#' "latitude")],
#' df=TRUE)
#' pg_etest <- pg_etest[,-1]
#'
#' # Non-correlated variables
#' env_varsL <- correlation_finder(cor(pg_etrain),
#' threshold = 0.8,
#' verbose = F)
#' env_vars <- env_varsL$descriptors
#' # Number of variables to fit ellipsoids (3,5,6 )
#' nvarstest <- c(3,5,6)
#' # Level
#' level <- 0.95
#' # Environmental background to compute the appoximated
#' # prevalence in the prediction
#' env_bg <- raster::sampleRandom(wc,10000)
#'
#' # Selection process
#'
#' e_selct <- ellipsoid_selection(env_train = pg_etrain,
#' env_test = pg_etest,
#' env_vars = env_vars,
#' level = level,
#' nvarstest = nvarstest,
#' env_bg = env_bg,
#' omr_criteria=0.07)
#'
#'# Best ellipsoid model for "omr_criteria" and prevalence
#' bestvarcomb <- stringr::str_split(e_selct$fitted_vars,",")[[1]]
#'
#' # Ellipsoid model projection
#'
#' best_mod <- cov_center(pg_etrain[,bestvarcomb],
#' mve = T,
#' level = 0.99,
#' vars = 1:length(bestvarcomb))
#'
#'
#' # Projection model in geographic space
#'
#' mProj <- ellipsoidfit(wc[[bestvarcomb]],
#' centroid = best_mod$centroid,
#' covar = best_mod$covariance,
#' level = 0.99,size = 3)
#'
#' raster::plot(mProj$suitRaster)
#' points(pg[,c("longitude","latitude")],pch=20,cex=0.5)
#'
# Evaluating the model with partial roc of independent data
#' pg_proc <- pROC(continuous_mod = mProj$suitRaster,
#' test_data = pg_test[,c("longitude","latitude")],
#' n_iter = 1000,
#' E_percent = 5,
#' boost_percent = 50,parallel = F)
#' print(pg_proc$pROC_summary)
#' }
suppressMessages(library(furrr))
suppressMessages(library(dplyr))
ellipsoid_selection <- function(env_train,env_test=NULL,env_vars,nvarstest,level=0.95,
mve=TRUE,env_bg=NULL,omr_criteria,parallel=F,ncores=NULL,
comp_each=100,proc=FALSE,
proc_iter=100,rseed=TRUE){
n_vars <- length(env_vars)
ntest <- sapply(nvarstest, function(x) choose(n_vars,x))
nmodels <- sum(ntest)
cat("-----------------------------------------------------------------------------------------\n")
cat("\t\t**** Starting model selection process ****\n")
cat("-----------------------------------------------------------------------------------------\n\n")
for(i in 1:length(ntest)){
cat("A total number of",ntest[i] ,"models will be created for combinations",
"of",n_vars, "variables taken by",nvarstest[i],"\n\n")
}
cat("-----------------------------------------------------------------------------------------\n")
cat("\t **A total number of",nmodels ,"models will be tested **\n\n")
cat("-----------------------------------------------------------------------------------------\n")
if(nmodels >100 && parallel){
max_var <- max(nvarstest)
cvars <- lapply(nvarstest, function(x) {
cb <- utils::combn(env_vars,x)
if(x < max_var){
nrowNA <-max_var-nrow(cb)
na_mat <- matrix(nrow = nrowNA,ncol=ncol(cb))
cb <- rbind(cb,na_mat)
}
return(cb)
})
big_vars <- do.call(cbind,cvars)
n_cores <- future::availableCores() -1
if(ncores>n_cores || is.null(ncores)){
n_cores <- n_cores
} else{
n_cores <- ncores
}
niter_big <- floor(nmodels/n_cores)
if(niter_big>comp_each)
niter_big <- comp_each
steps <- seq(1, nmodels, niter_big)
nsteps <- length(steps)
if(steps[nsteps]<nmodels){
kkk <- c(steps, nmodels + 1)
} else {
kkk <- steps
kkk[nsteps] <- kkk[nsteps] + 1
}
long_k <- length(kkk)
pasos <- 1:(length(kkk) - 1)
pasosChar <- paste0(pasos)
globs <- c("env_train",
"env_test",
"env_bg")
#source()
furrr::furrr_options(globals = c("env_train",
"env_test",
"env_bg",
"rseed","level"),
packages = c("Rcpp","ntbox"))
plan(multisession,workers=n_cores)
options(future.globals.maxSize= 8500*1024^2)
model_select <- new.env()
for (paso in pasosChar) {
x <- as.numeric(paso)
#fname <- file.path(dir1,paste0("eselection_",x,".txt"))
#if(x>n_cores) core <- 1
cat("Doing calibration from model ",
kkk[x],"to ",kkk[x + 1] - 1,
"in process ",x,"\n\n")
model_select[[paso]] %<-% {
seq_model <- kkk[x]:(kkk[x + 1] - 1)
combs_v <- as.matrix(big_vars[,seq_model])
results_L <- lapply(1:ncol(combs_v),function(x_comb) {
var_comb <- stats::na.omit(combs_v[,x_comb])
env_data0 <- stats::na.omit(env_train[,var_comb])
env_test0 <- stats::na.omit(env_test[,var_comb])
env_bg0 <- stats::na.omit(env_bg[,var_comb])
r1 <- ellipsoid_omr(env_data = env_data0,
env_test = env_test0,
env_bg = env_bg0,
cf_level = level,
proc = proc,
proc_iter,rseed=rseed)
return(r1)
})
results_df <- do.call("rbind.data.frame",results_L)
cat("Finishing calibration of models ",kkk[x],"to ",kkk[x + 1] - 1,
"\n\n")
return(results_df)
}
}
mres <- as.list(model_select)
cat("Finishing...\n\n")
cat("-----------------------------------------------------------------------------------------\n")
rfinal <- do.call("rbind.data.frame", mres )
future::plan(sequential)
}
else{
cvars <- lapply(nvarstest, function(x) utils::combn(env_vars,x))
results_L <- lapply(1:length(cvars), function(x) {
combs_v <- cvars[[x]]
results_L <- lapply(1:ncol(combs_v),function(x_comb) {
var_comb <- stats::na.omit(combs_v[,x_comb])
env_data <- stats::na.omit(env_train[,var_comb])
env_test <- stats::na.omit(env_test[,var_comb])
env_bg <- stats::na.omit(env_bg[,var_comb])
r1 <- ellipsoid_omr(env_data = env_data,
env_test = env_test,
env_bg = env_bg,
cf_level = level,
proc = proc,
proc_iter,rseed=rseed)
return(r1)
})
results_df <- do.call("rbind.data.frame",results_L)
return(results_df)
})
rfinal <- do.call("rbind.data.frame",results_L)
}
bg_omr <- c("bg_prevalence","om_rate_test") %in% names(rfinal)
bg_omr_in <- all(bg_omr)
if( bg_omr_in){
mean_omr <- rowMeans(rfinal[,c("om_rate_train",
"om_rate_test")])
rfinal$mean_omr_train_test <- mean_omr
rfinal <- rfinal[order(rfinal$mean_omr_train_tes,
rfinal$bg_prevalence,
decreasing = F),]
rfinal <- data.frame(rfinal,rank_by_omr_train_test=1:nrow(rfinal))
met_criteriaID_train <- which(rfinal$om_rate_train <= omr_criteria)
met_criteriaID_test <- which(rfinal$om_rate_test <= omr_criteria)
met_criteriaID_both <- intersect(met_criteriaID_train,
met_criteriaID_test)
if(length(met_criteriaID_train) > 0L){
cat("\t",length(met_criteriaID_train),
"models passed omr_criteria for train data\n")
}
if(length(met_criteriaID_test) > 0L){
cat("\t",length(met_criteriaID_test),
"models passed omr_criteria for test data\n")
}
if(length(met_criteriaID_both) > 0L){
cat("\t",length(met_criteriaID_both),
"models passed omr_criteria for train and test data\n")
}
else{
cat("\tNo model passed the omission criteria ranking by mean omission rates\n")
return(rfinal)
}
best_r <- rfinal[met_criteriaID_both,]
if(proc){
best_r <- best_r[order(best_r$env_bg_paucratio,
decreasing = TRUE),]
}
rfinal <- rbind(best_r,
rfinal[-met_criteriaID_both,])
if(proc){
rfinal <- data.frame(rfinal,
rank_omr_aucratio=1:nrow(rfinal))
}
}
else
rfinal <- rfinal[order(rfinal$om_rate_train,
decreasing = F),]
rownames(rfinal) <- NULL
return(rfinal)
}
#' ellipsoid_omr
#'
#' @description Compute the omission rate of ellipspoid models
#' @param env_data A data frame with the environmental data.
#' @param env_test A data frame with the environmental testing data. The default is NULL if given the selection process will show the p-value of a binomial test.
#' @param env_bg Environmental data to compute the approximated prevalence of the model. The data should be a sample of the environmental layers of the calibration area.
#' @param cf_level Proportion of points to be included in the ellipsoids. This parameter is equivalent to the error (E) proposed by Peterson et al. (2008).
#' @param mve A logical value. If TRUE a minimum volume ellipsoid will be computed using
#' the function \code{\link[MASS]{cov.rob}} of the \pkg{MASS} package. If False the covariance matrix of the input data will be used.
#' @param proc Logical if TRUE a partial roc test will be run.
#' @param proc_iter Numeric. The total number of iterations for the partial ROC bootstrap.
#' @param rseed Logical. Whether or not to set a random seed for partial roc bootstrap. Default TRUE.
#' @return A data.frame with 5 columns: i) "fitted_vars" the names of variables that were fitted; ii) "om_rate" omission rates of the model; iii) "bg_prevalence" approximated prevalence of the model see details section.
#' @export
#' @examples
#' \dontrun{
#' # Bioclimatic layers path
#' wcpath <- list.files(system.file("extdata/bios",
#' package = "ntbox"),
#' pattern = ".tif$",full.names = TRUE)
#' # Bioclimatic layers
#' wc <- raster::stack(wcpath)
#' # Occurrence data for the giant hummingbird (Patagona gigas)
#' pg <- utils::read.csv(system.file("extdata/p_gigas.csv",
#' package = "ntbox"))
#' # Split occs in train and test
#' pgL <- base::split(pg,pg$type)
#' pg_train <- pgL$train
#' pg_test <- pgL$test
#' # Environmental data for training and testing
#' pg_etrain <- raster::extract(wc,pg_train[,c("longitude",
#' "latitude")],
#' df=TRUE)
#' pg_etrain <- pg_etrain[,-1]
#' pg_etest <- raster::extract(wc,pg_test[,c("longitude",
#' "latitude")],
#' df=TRUE)
#' pg_etest <- pg_etest[,-1]
#'
#' # Non-correlated variables
#' env_varsL <- correlation_finder(cor(pg_etrain),
#' threshold = 0.8,
#' verbose = F)
#' env_vars <- env_varsL$descriptors
#' env_bg <- raster::sampleRandom(wc,10000)
#' ellip_eval <- ellipsoid_omr(env_data=pg_etrain[,c("bio01","bio07","bio12")],
#' env_test=pg_etest[,c("bio01","bio07","bio12")],
#' env_bg = env_bg[,c("bio01","bio07","bio12")],
#' cf_level = 0.97,
#' mve=TRUE,proc=TRUE,
#' proc_iter=100,rseed=TRUE)
#' print(ellip_eval)
#' }
ellipsoid_omr <- function(env_data,env_test=NULL,env_bg,cf_level,mve=TRUE,proc=FALSE,proc_iter=100,rseed=TRUE){
emd <- try(cov_center(data = env_data,
mve = mve,
level = cf_level,
vars = 1:ncol(env_data)),
silent = TRUE)
message1 <- attr(emd,"class")== "try-error"
if(length(message1)>0L)
return()
in_e <- inEllipsoid(centroid = emd$centroid,
eShape = emd$covariance,
env_data = env_data,
level = cf_level)
fails_train_ids <- which(in_e$in_Ellipsoid== 0)
if(length(fails_train_ids)>0){
fails_train_ids <- paste0(fails_train_ids,collapse = ",")
} else {
fails_train_ids <- NA
}
occs_table <- table( in_e$in_Ellipsoid)
succsID <- which(names(occs_table) %in% "1")
failsID <- which(names(occs_table) %in% "0")
occs_succs <- if(length(succsID)>0L){
occs_table[[succsID]]
} else{
0
}
occs_fail <- if(length(failsID)>0L){
occs_table[[failsID]]
} else{
0
}
a_train <- occs_fail
omrate_train <- a_train /nrow( in_e)
d_results <- data.frame(fitted_vars =paste(names(emd$centroid),
collapse = ","),
nvars=length(emd$centroid),
om_rate_train= omrate_train,
non_pred_train_ids = fails_train_ids)
if(is.data.frame(env_test) || is.matrix(env_test)){
in_etest <- inEllipsoid(centroid = emd$centroid,
eShape = emd$covariance,
env_data = env_test,
level = cf_level)
fails_test_ids <- which(in_etest$in_Ellipsoid== 0)
if(length(fails_train_ids)>0){
fails_test_ids <- paste0(fails_test_ids,collapse = ",")
} else {
fails_test_ids <- NA
}
suits_val <- exp(-0.5*( in_etest$mh_dist))
occs_table_test <- table(in_etest$in_Ellipsoid)
succsID <- which(names(occs_table_test) %in% "1")
failsID <- which(names(occs_table_test) %in% "0")
occs_succs_test <- if(length(succsID)>0L){
occs_table_test[[succsID]]
} else{
0
}
occs_fail_test <- if(length(failsID)>0L){
occs_table_test[[failsID]]
} else{
0
}
a_test <- occs_fail_test
omrate_test <- a_test /nrow( in_etest)
d_results <- data.frame(d_results,
om_rate_test=omrate_test,
non_pred_test_ids=fails_test_ids)
}
if(!is.null(env_bg)){
env_bg <- data.frame(env_bg)
in_ebg <- inEllipsoid(centroid = emd$centroid,
eShape = emd$covariance,
env_data = env_bg,
level = cf_level)
suits_bg <- exp(-0.5*in_ebg$mh_dist)
bg_table <- table(c(in_ebg$in_Ellipsoid,in_e$in_Ellipsoid))
succs_bg_ID <- which(names(bg_table) %in% "1")
fails_bg_ID <- which(names(bg_table) %in% "0")
bg_succs <- if(length(succs_bg_ID)>0L){
bg_table[[succs_bg_ID]]
}
else{
0
}
bg_fails <- if(length(fails_bg_ID)>0L){
bg_table[[fails_bg_ID]]
}
else{
0
}
prevBG <- bg_succs/(bg_fails+bg_succs)
d_results <-data.frame( d_results,
bg_prevalence= prevBG)
if(exists("in_etest")){
#bin_table <- table(c(in_ebg$in_Ellipsoid,
# in_etest$in_Ellipsoid))
#binBG <- bin_table[[2]]/(bin_table[[1]]+bin_table[[2]])
test_fail <- occs_fail_test
test_succs <- occs_succs_test
p_bin <- 1 - stats::pbinom(test_succs,
size=test_succs+test_fail,
prob = prevBG)
d_results <-data.frame( d_results,
pval_bin=p_bin)
if(proc){
proc <- pROC(suits_bg,test_data = suits_val,
n_iter = proc_iter,rseed = rseed,E_percent = 5)
pval_proc <- proc$pROC_summary[3]
mean_aucratio <- proc$pROC_summary[2]
mean_auc <- proc$pROC_summary[1]
d_results <-data.frame( d_results,
pval_proc,
env_bg_paucratio= mean_aucratio,
env_bg_auc = mean_auc)
}
}
}
return(d_results)
}
#' inEllipsoid: Determine if a point is inside or outside an ellipsoid
#'
#' @description Determine if a point is inside or outside an ellipsoid.
#' @param centroid A numeric vector of centroids for each environmental variable
#' @param eShape Shape matrix of the ellipsoid (can be a covariance matrix or a minimum volume ellipsoid).
#' @param env_data A data frame with the environmental training data.
#' @param level Proportion of points to be included in the ellipsoids. This parameter is equivalent to the error (E) proposed by Peterson et al. (2008).
#' @return A data.frame with 2 columns. The first "in_Ellipsoid" binary response with values 1 (inside the ellipsoid) and zeros (outside the ellipsoid); the second "mh_dist" Mahalanobis distance to centroid.
#' @export
#' @examples
#' \dontrun{
#' # Bioclimatic layers path
#' wcpath <- list.files(system.file("extdata/bios",
#' package = "ntbox"),
#' pattern = ".tif$",full.names = TRUE)
#' # Bioclimatic layers
#' wc <- raster::stack(wcpath)
#' # Occurrence data for the giant hummingbird (Patagona gigas)
#' pg <- utils::read.csv(system.file("extdata/p_gigas.csv",
#' package = "ntbox"))
#' # Environmental data
#' pg_env <- raster::extract(wc,pg[,c("longitude",
#' "latitude")],
#' df=TRUE)
#' pg_env <- pg_env[,-1]
#'
#' pg_ellip <- cov_center(pg_env,mve=TRUE,
#' level=0.95,
#' vars = c("bio05",
#' "bio06",
#' "bio12"))
#' # Environmental random data
#' env_rdata <- raster::sampleRandom(wc,1000)
#' inErdata <- inEllipsoid(env_data = env_rdata[,c("bio05",
#' "bio06",
#' "bio12")],
#' centroid = pg_ellip$centroid,
#' eShape=pg_ellip$covariance,
#' level = 0.99)
#'
#' }
inEllipsoid <- function(centroid,eShape,env_data,level){
mh_dist <- stats::mahalanobis(env_data,
center = centroid,
cov =eShape)
in_Ellipsoid <- mh_dist <= stats::qchisq(level,
length(centroid))
in_Ellipsoid <- in_Ellipsoid*1
in_Ellipsoid_mh <- data.frame(in_Ellipsoid,mh_dist )
return(in_Ellipsoid_mh)
}
#' Generate random environmental background data
#'
#' @description Generate environmental background data is a function similar
#' to sampleRandom function of the raster package but optimized for Ecological
#' niche modeling.
#' @param envlayers A raster stack or brick.
#' @param nbg Number of points for the background data
#' @param nprop Proportion of environmental data to be sampled. Default NULL
#' @param coordinates Logical. If TRUE cell coordinates will be returned
#' @param cellIDs Logical. If TRUE cell IDs will be returned
#' @param rseed Random seed number. Default NULL
#' @param ncores Number of workers to run the parallel process.
#' @import future
#' @examples
#' \dontrun{
#' wcpath <- list.files(system.file("extdata/bios",
#' package = "ntbox"),
#' pattern = ".tif$",
#' full.names = TRUE)
#'
#' envlayers <- raster::stack(wcpath)
#' vals <- sample_envbg(envlayers,nbg = 3583)
#' # Using a proportion of data
#' vals <- sample_envbg(envlayers,nprop = 0.20)
#' }
#' @export
sample_envbg <- function(envlayers,nbg,nprop=NULL,coordinates=FALSE,
cellIDs=FALSE,rseed=NULL,ncores=4){
if(class(envlayers) == "RasterStack" ||
class(envlayers) == "RasterBrick"){
envlayers <- raster::stack(envlayers)
l1 <- envlayers[[1]]
#nona <- raster::Which(!is.na(l1),cells=TRUE)
nona <- which(!is.na(as.vector(l1)))
n_nona <- length(nona)
if(!is.null(nprop)){
npoints <- ceiling(nprop*n_nona)
}
else{
npoints <- nbg
}
if(!is.numeric(rseed))
set.seed(rseed)
#cat("Number of points to be sampled:",npoints)
toSamp <- sample(nona,size = npoints,replace = FALSE)
canP <- raster::canProcessInMemory(l1,
n=raster::nlayers(envlayers))
if(canP){
env_bg <- envlayers[toSamp]
}
else {
n_cores <- future::availableCores() -1
if(ncores>n_cores || is.null(ncores)){
n_cores <- n_cores
} else{
n_cores <- ncores
}
fnames <- sapply(envlayers@layers, function(x) x@file@name)
fnames <- unique(fnames)
indexL <- 1:raster::nlayers(envlayers)
furrr::furrr_options(globals = c("fnames",
"toSamp",
"indexL"))
plan(multisession,workers=n_cores)
options(future.globals.maxSize= 8500*1024^2)
env_bg <- furrr::future_map_dfc(indexL, function(x){
if(length(fnames) == 1)
r1 <- raster::raster(fnames,band=x)
else
r1 <- raster::raster(fnames[x])
r2 <- r1[]
d1 <- data.frame(r2[toSamp])
names(d1) <- names(r1)
return(d1)
},.progress = TRUE)
future::plan(future::sequential)
}
if(coordinates){
coords <- raster::xyFromCell(l1,toSamp)
env_bg <- data.frame(coords,env_bg)
}
if(cellIDs){
env_bg <- data.frame(cellID=toSamp,env_bg)
}
}
else
stop("envlayers should be of class RasterStack or RasterBrick")
return(env_bg)
}
#' Partial ROC calculation for Niche Models
#'
#' @description pROC applies partial ROC tests to continuous niche models.
#'
#' @param continuous_mod a RasterLayer or a numeric vector of the ecological niche model to be evaluated. If a numeric vector is provided it should contain the values of the predicted suitability.
#' @param test_data A numerical matrix, data.frame, or a numeric vector. If it is data.frame or matrix it should contain coordinates of the occurrences used to test the ecological niche model to be evaluated; columns must be: longitude and latitude. If numeric vector it should contain the values of the predicted suitability.
#' @param E_percent (numeric) value from 0 to 100 that will be used as a threshold (E);
#' default = 5.
#' @param boost_percent (numeric) value from 0 to 100 representing the percent of testing data
#' to be used for performing the bootstrap process for calculating the partial ROC;
#' default = 50.
#' @param n_iter (numeric) number of bootstrap iterations to be performed;
#' default = 1000.
#' @param rseed Logical. Whether or not to set a random seed. Default FALSE.
#' @param parallel Logical to specify if the computation will be done in parallel. default=TRUE.
#' @param ncores Numeric; the number of cores to be used for parallelization.
#' @return A data.frame containing the AUC values and AUC ratios calculated for each iteration.
#' @details Partial ROC is calculated following Peterson et al.
#' (2008; \url{http://dx.doi.org/10.1016/j.ecolmodel.2007.11.008}). This function is a modification
#' of the PartialROC funcion, available at \url{https://github.com/narayanibarve/ENMGadgets}.
#' @import Rcpp
#' @references Peterson, A.T. et al. (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol. Modell., 213, 63–72.
#' @examples
#' # Load a continuous model
#' conti_model <- raster::raster(system.file("extdata",
#' "ambystoma_model.tif",
#' package="ntbox"))
#' # Read validation (test) data
#' test_data <- read.csv(system.file("extdata",
#' "ambystoma_validation.csv",
#' package = "ntbox"))
#'
#' # Filter only presences as the Partial ROC only needs occurrence data
#' test_data <- dplyr::filter(test_data, presence_absence==1)
#' test_data <- test_data[,c("longitude","latitude")]
#'
#' partial_roc <- pROC(continuous_mod=conti_model,
#' test_data = test_data,
#' n_iter=1000,E_percent=5,
#' boost_percent=50,
#' parallel=FALSE)
#'
#' @importFrom purrr map_df
#' @import future
#' @useDynLib ntbox
#' @export
pROC <- function(continuous_mod,test_data,
n_iter=1000,E_percent=5,
boost_percent=50,
parallel=FALSE,ncores=4,rseed=FALSE){
if (class(continuous_mod) == "RasterLayer") {
if (continuous_mod@data@min == continuous_mod@data@max) {
stop("\nModel with no variability.\n")
}
if (is.data.frame(test_data) || is.matrix(test_data)) {
test_data <- stats::na.omit(raster::extract(continuous_mod,
test_data))
}
vals <- continuous_mod[!is.na(continuous_mod[])]
}
if(is.numeric(continuous_mod)){
vals <- continuous_mod
if (!is.numeric(test_data))
stop("If continuous_mod is of class numeric,
test_data must be numeric...")
}
ndigits <- proc_precision(mod_vals = vals,
test_data = test_data)
tomult <- as.numeric(paste0("1e+",ndigits))
test_value <- test_data*tomult
test_value <- round(as.vector(test_value))
vals2 <- round(vals*tomult)
classpixels <- as.data.frame(base::table(vals2),
stringsAsFactors = F)
names(classpixels) <- c("value",
"count")
classpixels$value <- as.numeric(classpixels$value)
classpixels <- data.frame(stats::na.omit(classpixels))
value <- count <- totpixperclass <- NULL
classpixels <- classpixels %>%
dplyr::mutate(value = rev(value),
count = rev(count),
totpixperclass = cumsum(count),
percentpixels = totpixperclass/sum(count)) %>%
dplyr::arrange(value)
#if(nrow(classpixels)>1500){
# classpixels <- classpixels %>%
# dplyr::sample_n(1500) %>% dplyr::arrange(value)
#}
error_sens <- 1 - (E_percent/100)
models_thresholds <- classpixels[, "value"]
fractional_area <- classpixels[, "percentpixels"]
n_data <- length(test_value)
n_samp <- ceiling((boost_percent/100) * (n_data))
big_classpixels <- matrix(rep(models_thresholds,
each = n_samp),
ncol = length(models_thresholds))
calc_aucDF <- function(big_classpixels,
fractional_area,
test_value,
n_data, n_samp,
error_sens,rseed=NULL) {
if(is.numeric(rseed)) set.seed(rseed)
rowsID <- sample(x = n_data,
size = n_samp,
replace = TRUE)
test_value1 <- test_value[rowsID]
omssion_matrix <- big_classpixels > test_value1
sensibility <- 1 - colSums(omssion_matrix)/n_samp
xyTable <- data.frame(fractional_area, sensibility)
xyTable <- rbind(xyTable,c(0,0))
xyTable <- xyTable[order(xyTable$fractional_area,
decreasing = F),]
auc_model <- trapozoid_roc(xyTable$fractional_area,
xyTable$sensibility)
if(error_sens>0){
less_ID <- which(xyTable$sensibility <= error_sens)
xyTable <- xyTable[-less_ID, ]
auc_pmodel <- trapozoid_roc(xyTable$fractional_area,
xyTable$sensibility)
auc_prand <- trapozoid_roc(xyTable$fractional_area,
xyTable$fractional_area)
}
else{
auc_pmodel <- auc_model
auc_prand <- 0.5
}
auc_ratio <- auc_pmodel/auc_prand
auc_table <- data.frame(auc_model,
auc_pmodel,
auc_prand,
auc_ratio)
return(auc_table)
}
if (parallel) {
n_cores <- nc(ncores)
furrr::furrr_options(packages = c("Rcpp","ntbox"))
plan(multisession,workers=n_cores)
options(future.globals.maxSize= 8500*1024^2)
roc_env <- new.env()
niter_big <- floor(n_iter/n_cores)
n_runs <- rep(niter_big, n_cores)
sum_n_runs <- sum(n_runs)
n_runs[1] <- n_runs[1] + (n_iter - sum_n_runs)
for (i in 1:length(n_runs)) {
x <- as.character(i)
roc_env[[x]] %<-% {
library(Rcpp)
x1 <- 1:n_runs[i]
auc_matrix1 <- x1 %>%
purrr::map_df(~calc_aucDF(big_classpixels,
fractional_area,
test_value,
n_data, n_samp,
error_sens,rseed=NULL))
}
}
partial_AUC <- as.list(roc_env)
rm(roc_env)
partial_AUC <- do.call(rbind.data.frame,
partial_AUC)
rownames(partial_AUC) <- NULL
future::plan(future::sequential)
}
else {
partial_AUC <- 1:n_iter %>%
purrr::map_df(function(i){
proc <- calc_aucDF(big_classpixels,
fractional_area,
test_value,
n_data,
n_samp,
error_sens,rseed = i)
})
}
mauc <- mean(partial_AUC$auc_model, na.rm = TRUE)
maucp <- mean(partial_AUC$auc_ratio, na.rm = TRUE)
proc <- sum(partial_AUC$auc_ratio <= 1, na.rm = TRUE)/
length(partial_AUC$auc_ratio[!is.na(partial_AUC$auc_ratio)])
p_roc <- c(mauc,maucp, proc)
names(p_roc) <- c("Mean_AUC",
paste("Mean_pAUC_ratio_at_",
E_percent,
"%", sep = ""),
"P_value")
p_roc_res <- list(pROC_summary = p_roc,
pROC_results = partial_AUC)
return(p_roc_res)
}
proc_precision <- function(mod_vals,test_data){
min_vals <- min(mod_vals,na.rm = TRUE)
percentil_test <- unique(sort(stats::na.omit(test_data)))[2]
#percentil_test <- stats::quantile(test_data,
# probs=0.1)
partition_flag <- mean(c(min_vals,
percentil_test))
fflag <- stringr::str_detect(partition_flag, "e")
if (length(fflag)>0L && fflag) {
ndigits <- stringr::str_split(partition_flag, "e-")[[1]]
ndigits <- as.numeric(ndigits)[2] #- 1
}
else {
med <- stringr::str_extract_all(partition_flag, pattern = "[0-9]|[.]")
med <- unlist(med)
med <- med[-(1:which(med == "."))]
med1 <- which(med != 0)
ndigits <- ifelse(med1[1] <= 2, 3, 4)
}
return(ndigits)
}
#' nc: Function to check the number of available cores
#'
#' @description nc is a helper function to check if the number of cores required to run a parallel process is less or equal to the total number of cores of the system.
#' @param ncores Number of cores for the parallel process.
#' @return Returns an integer representing the number of cores that will be used to run a parallel process.
#' @details If ncores is bigger than the system's number of cores the function will return the system's number of cores. The functions that use this helper are \code{\link{mop}} and \code{\link{pROC}}.
#' @export
#' @examples
#' # Print the number of cores
#' print(nc(ncores=8))
nc<- function(ncores){
nc_max <- future::availableCores()
if(ncores > nc_max){
warning(paste("The specified ncores are more than the system's ncores.",
"Runing with the system's ncores"))
ncores <- nc_max
}
return(ncores)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.