calcATHBpts | R Documentation |
calcATHB
calculates predicted thermal sensation based on the adaptive thermal heat balance approach
using Gagge's 2 Node Model
calcATHBpts(trm, psych, ta, tr, vel, rh, met, wme = 0, pb = 760,
ltime = 60, ht = 171, wt = 69.9)
trm |
- Running mean outdoor temperature in [degree C] |
psych |
- factor related to fixed effect on perceived control |
ta |
- a numeric value presenting air temperature in [degree C] |
tr |
- a numeric value presenting mean radiant temperature in [degree C] |
vel |
- a numeric value presenting air velocity in [m/s] |
rh |
- a numeric value presenting relative humidity [%] |
met |
- a numeric value presenting metabolic rate in [met] |
wme |
- a numeric value presenting external work in [met] |
pb |
- a numeric value presenting barometric pressure in [torr] or [mmHg] |
ltime |
- a numeric value presenting exposure time in [minutes] |
ht |
- a numeric value presenting body height in [cm] |
wt |
- a numeric value presenting body weight in [kg] |
All variables must have the same length 1. For the calculation of several values use function calcComfInd
.
calcATHBpts
returns the predicted thermal sensation adapted through the ATHB approach
Marcel Schweiker
Schweiker & Wagner (2015) <doi:10.1016/j.buildenv.2015.08.018> Schweiker & Wagner (2016) Exploring potentials and limitations of the adaptive thermal heat balance framework Proceedings of 9th Windsor Conference: making comfort relevant Cumberland Lodge, Windsor, UK, 2016
see also calcComfInd
, link{calcATHBpmv}
, link{calcATHBset}
calcATHBpts(20, 0, 25, 25, .1, 50, 1.1, 0, 760, 60, 171, 70)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.