#' Resumen de las variables numericas de un dataframe
#'
#' Esta es una función que permite obtener el resumen de todas las variables numéricas de un
#' dataframe. Resumen de todas la variables numéricas de un dataframe. Detectar automaticamente las
#' variables numéricas y excluye las variables caracter o factor. Muestra el resumen: media, SD, min, max,
#' NA, etc.
#' Función tomada de la paquetería: xda: R package for exploratory data analysis.
#'
#' @param df Una base de datos, dataframe.
#'
#' @return Un resumen del dataframe.
#' @export
#'
#' @examples
#' #resumen de todas las variables numericas del dataframe
#' numSummary(iris)
#' @encoding UTF-8
#' @importFrom stats IQR
#' @importFrom stats quantile
numSummary <- function(df){
num_cols <- unlist(lapply(df, is.numeric)) # columnas numericas
num_cols
dfnum <- df[ , num_cols]
D <- sapply(dfnum, function(x) as.numeric(x,na.rm=TRUE))
DD <- as.data.frame(D)
#kurtosis computation
kurtosis <- function(x,na.rm = TRUE){
if(na.rm){
x <- x[which(!is.na(x))]
}
x_mean <- mean(x)
x_count <- length(x)
s2 <- sum((x-x_mean)^2)
s4 <- sum((x-x_mean)^4)
m2 <- s2/x_count
m4 <- s4/x_count
res <- ((m4 / m2^2 - 3) + 3) * (1 - 1 / x_count)^2 - 3
}
#asimetría
skewness <- function(x,na.rm = TRUE){
if(na.rm){
x <- x[which(!is.na(x))]
}
x_mean <- mean(x)
x_count <- length(x)
s2 <- sum((x-x_mean)^2)
s3 <- sum((x-x_mean)^3)
m2 <- s2/x_count
m3 <- s3/x_count
res <- (m3 / m2^(3.0/2)) * (1 - 1 / x_count)^(3.0/2)
}
options(digits = 3)
n <- sapply(DD, function(x) sum(!is.na(x)))
mean <- sapply(DD, function(x) mean(x,na.rm=TRUE))
sd <- sapply(DD, function(x) sd(x,na.rm=TRUE))
max <- sapply(DD, function(x) max(x,na.rm=TRUE))
min <- sapply(DD, function(x) min(x,na.rm=TRUE))
range <- max - min
nzero <- sapply(DD, function(x) length(which(x == 0)))
nunique <- sapply(DD, function(x) length(unique(x)))
outliersummary <- t(sapply(DD, function(x) {
iqr <- stats::IQR(x,na.rm = TRUE,type = 4)
lowerbound <- stats::quantile(x,0.25,na.rm=TRUE)-(1.5*iqr)
upperbound <- stats::quantile(x,0.75,na.rm=TRUE)+(1.5*iqr)
noofoutliers <- length (which(x > upperbound | x <lowerbound))
return(c(iqr,lowerbound,upperbound,noofoutliers))
}))
kurtosis_val <- sapply(DD, function(x) kurtosis(x))
skewness_val <- sapply(DD, function(x) skewness(x))
d2 <- cbind.data.frame(n,mean,sd,max,min,range,nunique,nzero,outliersummary,kurtosis_val,skewness_val)
colnames(d2) <- c("n","media","sd","max","min","rango","nunicos","nceros","iqr","limitinferior","limitesuperior","noutlier","kurtosis","asimetria")
#mode computation
Mode <- function(x) {
ux <- unique(x)
ux[which.max(tabulate(match(x, ux)))]
}
mode <- sapply(dfnum, function(x) Mode(x) )
moda <- as.data.frame(mode)
n1 <- nrow(dfnum)
c1 <- ncol(dfnum)
numb <- rep(n1,c1)
numb <- data.frame(numb)
#missing value computation
faltantes <- sapply(dfnum, function(x) sum(is.na(x)) )
faltantes <- as.data.frame(faltantes)
d3 <- cbind(d2,moda,faltantes)
missPer <- (faltantes/n1)*100
d3 <- cbind(d3,missPer)
colnames(d3)[ncol(d3)] <- "%faltantes"
#percentile value computation
q <- sapply(DD, function(x) quantile(x, c(.01,.05,.25,.5,.75,.95, .99),na.rm=TRUE) )
q <- as.data.frame(q)
q <- t(q)
d3 <- cbind(d3,q)
return(d3)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.