README.md

Yet Another Methylation Array Toolkit (YAMAT) - Copy-Number Analysis Package

The package is part of yamat ecosystem for methylation array data analysis. It focuses on copy-number analysis.

Quick Start

Install.

```{r, install_yamatcn} if (! ("devtools" %in% installed.packages()) install.packages("devtools") devtools::install_github("markgene/yamatCN")


Prepare the data.

```{r prep}
library(yamatCN)
library(minfiData)

ref <- RGsetEx[, 1:3]
qry <- RGsetEx[, 4:6]
report_dir <- tempdir()

Conumee pipeline:

```{r conumee}

Analysis

conumee_pipe( ref = ref, qry = qry, report_dir = report_dir, norm_method = "swan", batch = NULL, batch2 = NULL ) -> conumee_result

Report

outdir <- "~/Downloads/yamatCN" conumee_report <- yamatCN::report_pipe( conumee_result, outdir, genome_plot_width = 9, genome_plot_height = 15, cn_boundary = c(1.8, 2.2) )


MethylCNV pipeline:

```{r methylcnv}
# Analysis
methylcnv_pipe(
  ref = ref,
  qry = qry,
  report_dir = report_dir,
  norm_method = "methylcnv"
) -> methylcnv_result

# Report: TBA.

Conumee without binning (CWOB) pipeline:

```{r cwob}

Analysis

cwob_pipe( ref = ref, qry = qry, report_dir = report_dir, norm_method = "yamat", batch = NULL, batch2 = NULL ) -> cwob_result

Report

cwob_report <- yamatCN::report_pipe( cwob_result, outdir, genome_plot_width = 9, genome_plot_height = 15, size = 1, cn_boundary = c(1.8, 2.2) ) ```

Known batch effect can be removed by setting batch and batch2 arguments.

Appendix: CNV Pipelines in Papers and Bioconductor

I am listing a few copy-number analysis pipelines published in research papers or archived in Bioconductor.

A common step of CNV analyses is the segmentation. I am listing some of the segmentation methods:



markgene/yamatCN documentation built on Dec. 7, 2019, 4:36 a.m.