rglindley_mix = function(n, pi, alpha, beta, gamma, plot.it = TRUE, empirical = FALSE,
col.pop = "red3", col.empirical = "navy", ...){
g = length(pi)
pi = pi/sum(pi)
if(n == floor(n) && min(c(pi, alpha, beta, gamma, n)) > 0
&& length(alpha) == g && length(beta) == g && length(gamma) == g){
z = rmultinom(n = n, size = 1, pi)
aux = rowSums(z)
modal = 0
for(j in 1:g){
if(alpha[j] >= 1){
modal[j] = max(dglindley_mix(c((alpha[j]-1)*beta, (alpha[j])*beta), pi, alpha, beta, gamma))
}else{
U = modal[j] = 30
while(modal[j] >= 0.9 * U){
modal[j] = optimize(function(x) dglindley(x, alpha[j], beta[j], gamma[j]), interval = c(0, U), maximum = T)$maximum
U = 2 * U
}
modal[j] = dglindley_mix(modal[j], pi, alpha, beta, gamma)
if(modal[j] > 10* dglindley_mix(1, pi, alpha, beta, gamma)){
modal[j] = dglindley_mix(1, pi, alpha, beta, gamma)
}
}
}
sample = NULL
for(j in 1:g){
sample = c(sample, rglindley(aux[j], alpha[j], beta[j], gamma[j],
plot.it = FALSE)$sample)
}
if(plot.it){
d.breaks <- ceiling(nclass.Sturges(sample)*2.5)
modal = min(c(1, max(modal, hist(sample, plot = FALSE,
if(any(names(list(...)) == "breaks") ==
FALSE){
breaks = d.breaks}, ...)$density)))
hist(sample, freq = F, border = "gray48",
main = "Sampling distribution of X",xlab = "x",
ylab = "Density",
ylim = c(0, modal),
if(any(names(list(...)) == "breaks") == FALSE){breaks = d.breaks}, ...)
pop = function(x){dglindley_mix(x, pi, alpha, beta, gamma)}
curve(pop, col = col.pop, lwd = 3, add = T)
if(empirical){
lines(density(sample),col = col.empirical,lwd = 3)
legend("topright", legend=(c("Population", "Empirical")),
fill=c(col.pop, col.empirical),border = c(col.pop, col.empirical), bty="n")
}
else{
legend("topright", legend=(c("Population")),
fill=c(col.pop),border = c(col.pop), bty="n")
}
p <- recordPlot()
}
ord <- order(sample)
sample <- cbind(sample, rep(1:g, aux))
sample <- sample[ord,]
if(plot.it){
output = list(sample[,1], g, pi, alpha, beta, gamma, sample[,2], p)
names(output) = c("sample", "g", "pi", "alpha", "beta", "gamma", "classification",
"plot")
}
else{
output = list(sample[,1], g, pi, alpha, beta ,gamma, sample[,2])
names(output) = c("sample", "g", "pi", "alpha", "beta", "gamma", "classification")
}
return(output)}
else stop("The parametric space must be respected.")
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.