# Copyright 2007 Walter Alini, MatÃas Bordese
#
# This file is part of biOps.
#
# biOps is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# biOps is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with biOps; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#
#
# Title: Scale Operations
#
.check_scale_factors <- function(x_scale, y_scale){
if (x_scale <= 0 || y_scale <= 0)
stop("Scale factors must be positive")
if(x_scale < 1 || y_scale < 1)
warning("Use imgMedianShrink or imgAverageShrink to get better results")
}
# Function: imgNearestNeighborScale
# Scale an image using the nearest neighbor interpolation algorithm
#
# Parameters:
# imgdata - The image data.
# x_scale - Horizontal axe scale factor.
# y_scale - Vertical axe scale factor.
#
# Returns:
# The scaled imaged.
#
imgNearestNeighborScale <- function(imgdata, x_scale, y_scale){
imgScale(imgdata, x_scale, y_scale, 'nearestneighbor')
}
# Function: imgBilinearScale
# Scale an image using the bilinear interpolation algorithm
#
# Parameters:
# imgdata - The image data.
# x_scale - Horizontal axe scale factor.
# y_scale - Vertical axe scale factor.
#
# Returns:
# The scaled imaged.
#
imgBilinearScale <- function(imgdata, x_scale, y_scale){
imgScale(imgdata, x_scale, y_scale, 'bilinear')
}
# Function: imgCubicScale
# Scale an image using the cubic interpolation algorithm
#
# Parameters:
# imgdata - The image data.
# x_scale - Horizontal axe scale factor.
# y_scale - Vertical axe scale factor.
#
# Returns:
# The scaled imaged.
#
imgCubicScale <- function(imgdata, x_scale, y_scale){
imgScale(imgdata, x_scale, y_scale, 'cubic')
}
# Function: imgSplineScale
# Scale an image using the b-spline interpolation algorithm
#
# Parameters:
# imgdata - The image data.
# x_scale - Horizontal axe scale factor.
# y_scale - Vertical axe scale factor.
#
# Returns:
# The scaled imaged.
#
imgSplineScale <- function(imgdata, x_scale, y_scale){
imgScale(imgdata, x_scale, y_scale, 'spline')
}
# Function: imgScale
# Scale an image using the the given interpolation algorithm
#
# Parameters:
# imgdata - The image data.
# x_scale - Horizontal axe scale factor.
# y_scale - Vertical axe scale factor.
# interpolation - The interpolation method.
#
# Returns:
# The scaled imaged.
#
imgScale <- function(imgdata, x_scale, y_scale, interpolation='cubic'){
.check_scale_factors(x_scale, y_scale)
method <- switch(interpolation,
nearestneighbor='scaleByNearestNeighbor',
bilinear='scaleByBilinear',
cubic='scaleByCubic',
spline='scaleBySpline')
if (is.null(method)) stop('Unsupported interpolation method')
imgmatrix <- array(imgdata) # get linear array image representations
depth <- if (attr(imgdata, "type") == "grey") 1 else dim(imgdata)[3] # get images depth
width <- dim(imgdata)[2]
height <- dim(imgdata)[1]
# dims of the result
cols <- as.integer(width * x_scale)
rows <- as.integer(height * y_scale)
# call the C function for image operation
res <- .C(method, image=as.integer(imgmatrix),
width=as.integer(width), height=as.integer(height), depth=as.integer(depth),
ret=integer(cols * rows * depth), x_sc=as.double(x_scale), y_sc=as.double(y_scale),
PACKAGE="biOps")
imgtype <- if (depth == 1) "grey" else "rgb" # type of the result
imgdim <- c(rows, cols, if (depth == 3) depth else NULL) # dim of the result
img <- array(res$ret, dim=imgdim) # build the matrix from linear result
imagedata(img, type=imgtype) # build the imagedata
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.