#' @title get hrd metrics
#'
#' @param seq.dat the preprocessed sequencing data
#' @param CN.dat the copy number data
#' @param scaleTotal optional: rescale the total to range of 0-100
#' @param type optional: type of score to return, one of "sum" or "average"
#'
#'
#' @return LOH, NTAIraw, NTAInorm, LST, total
#'
#' @examples
#'seq.dat <- hrd.stats( )
#'
#' @exportMethod hrd.stats
# ------------------------------------- hrd.stats ------------------------------------- #
# hrd.stats is a function to compute the three HRD metrics (HRD-LOH, HRD-NTAI, and
# HRD-LST), as well as total HRD and mean HRD. assumes all standard options for minimum
# segment size and does not normalize for ploidy, this simply wraps up the output in one
# dataframe- you can run all of these steps individually for error checking.
#
# input: seq.dat, (data.frame) with chromosome, start.pos, end.pos, CNt, alleleA, alleleB;
# ploidy.dat (data.frame), the ploidy data
# CN.dat (data.frame), copy number data
# min.seg.size (integer), minimum segment size used in TAI calculations
# scaleTotal (boolean), rescale HRD total to 0-100
# output: out, a data.frame with HRD metrics
#' @name hrd.stats
hrd.stats <- function(seq.dat, CN.dat, ref = "grch37")
{
seq.dat <- preprocessHRD(seq.dat, ref)
# use default min seg size for each call
HRD.NTAIr <- getNTAI.raw( seq.dat )
HRD.LST <- getLST( seq.dat )
HRD.LOH <- getLOH( seq.dat )
HRD.NTAIm <- getNTAI.norm( seq.dat, CN.dat)
out = data.frame(
HRD.LOH = HRD.LOH,
HRD.NTAIr = HRD.NTAIr,
HRD.NTAIm = HRD.NTAIm,
HRD.LST = HRD.LST
)
# HRD.Score can be the total of any 3 metrics, raw or norm- this is the standard score
out$HRD.Score <- getHRD.Score( seq.dat, CN.dat, scaleTotal = FALSE )
return(out)
}
# ------------------------------------------------------------------------------- #
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.