#' @import methods
NULL
################################################################################
### Seurat
#' The Seurat Class
#'
#' The Seurat object is the center of each single cell analysis. It stores all information
#' associated with the dataset, including data, annotations, analyes, etc. All that is needed
#' to construct a Seurat object is an expression matrix (rows are genes, columns are cells), which
#' should be log-scale
#'
#' Each Seurat object has a number of slots which store information. Key slots to access
#' are listed below.
#'
#' @slot raw.data The raw project data
#' @slot data The normalized expression matrix (log-scale)
#' @slot scale.data scaled (default is z-scoring each gene) expression matrix; used for dimmensional reduction and heatmap visualization
#' @slot var.genes Vector of genes exhibiting high variance across single cells
#' @slot is.expr Expression threshold to determine if a gene is expressed (0 by default)
#' @slot ident THe 'identity class' for each cell
#' @slot meta.data Contains meta-information about each cell, starting with number of genes detected (nGene)
#' and the original identity class (orig.ident); more information is added using \code{AddMetaData}
#' @slot project.name Name of hte project (for record keeping)
#' @slot dr List of stored dimmensional reductions; named by technique
#' @slot assay List of additional assays for multimodal analysis; named by technique
#' @slot hvg.info The output of the mean/variability analysis for all genes
#' @slot imputed Matrix of imputed gene scores
#' @slot cell.names Names of all single cells (column names of the expression matrix)
#' @slot cluster.tree List where the first element is a phylo object containing the phylogenetic tree relating different identity classes
#' @slot snn Spare matrix object representation of the SNN graph
#' @slot calc.params Named list to store all calculation-related parameter choices
#' @slot kmeans Stores output of gene-based clustering from \code{DoKMeans}
#' @slot spatial Stores internal data and calculations for spatial mapping of single cells
#' @slot misc Miscellaneous spot to store any data alongisde the object (for example, gene lists)
#' @slot version Version of package used in object creation
#'
#' @name seurat
#' @rdname seurat
#' @aliases seurat-class
#' @exportClass seurat
#' @importFrom Rcpp evalCpp
#' @useDynLib Seurat
seurat <- methods::setClass(
"seurat",
slots = c(
raw.data = "ANY",
data = "ANY",
scale.data = "ANY",
var.genes = "vector",
is.expr = "numeric",
ident = "factor",
meta.data = "data.frame",
project.name = "character",
dr = "list",
assay = "list",
hvg.info = "data.frame",
imputed = "data.frame",
cell.names = "vector",
cluster.tree = "list",
snn = "dgCMatrix",
calc.params = "list",
kmeans = "ANY",
spatial = "ANY",
misc = "ANY",
version = "ANY"
)
)
#' show method for seurat
#'
#' @param object A Seurat object
#' @name show
#' @aliases show,seurat-method
#' @docType methods
#' @rdname show-methods
#'
setMethod(
f = "show",
signature = "seurat",
definition = function(object) {
cat(
"An object of class",
class(object),
"in project",
object@project.name,
"\n",
nrow(x = object@data),
"genes across",
ncol(x = object@data),
"samples.\n"
)
invisible(x = NULL)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.