R/rmgarch-scenario.R

Defines functions .rcokurt.fmoments .rcoskew.fmoments .rcov.fmoments .fitted.fmoments .fitted.fscenario fscenario fmoments bs.cov rob.cov ewma.cov lw.cov fun.cov .goload2 .goload1 goload .gogetscen goget scenario.mdist scenario.var scenario.cgarch scenario.dcc scenario.gogarch .fscenario mom.dcc mom.gogarch .fmoments

Documented in fmoments fscenario goget goload

#################################################################################
##
##   R package rmgarch by Alexios Ghalanos Copyright (C) 2008-2013.
##   This file is part of the R package rmgarch.
##
##   The R package rmgarch is free software: you can redistribute it and/or modify
##   it under the terms of the GNU General Public License as published by
##   the Free Software Foundation, either version 3 of the License, or
##   (at your option) any later version.
##
##   The R package rmgarch is distributed in the hope that it will be useful,
##   but WITHOUT ANY WARRANTY; without even the implied warranty of
##   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##   GNU General Public License for more details.
##
#################################################################################

# ToDo:
# 1. use saveRDS
# 2. use new cluster on time dimension
# 3. Make it faster

# DCC CGARCH and GOGARCH
.fmoments = function(spec, Data, n.ahead = 1, roll = 0, solver = "solnp", 
		solver.control = list(), fit.control = list(eval.se=FALSE), 
		cluster = NULL, save.output = FALSE, save.dir = getwd(), 
		save.name = paste("M", sample(1:1000, 1), sep= ""), ...)
{
	if(class(spec)[1]!= "goGARCHspec" & class(spec)[1]!="DCCspec") stop("\nonly gogarch and dcc models supported.")
	if(n.ahead>1 && roll>0) stop("\nn.ahead must be equal to 1 when using roll")
	asset.names = colnames(Data)
	m = dim(Data)[2]
	xmodel = list(asset.names = asset.names, assets = m, 
			model = ifelse(class(spec)[1]=="goGARCHspec", "gogarch", "dcc"), 
			n.ahead = n.ahead, roll = roll, save.output = save.output, save.dir = save.dir,
			save.name = save.name)
	# ... in mom.dcc are to pass the realizedVol matrix whereas in the GOGARCH model
	# (which does not use realizedVol), they are related to extra arguments passed to
	# the fastica routine
	mom = switch(class(spec)[1],
			goGARCHspec = mom.gogarch(Data = Data, spec = spec, n.ahead = n.ahead, 
					roll  = roll, solver = solver, solver.control = solver.control, 
					fit.control = fit.control, cluster = cluster,
					save.output = save.output, save.dir = save.dir, 
					save.name = save.name, ...),
			DCCspec = mom.dcc(Data = Data, spec = spec, n.ahead = n.ahead, 
					roll  = roll, solver = solver, solver.control = solver.control, 
					fit.control = fit.control, cluster = cluster,
					save.output = save.output, save.dir = save.dir, 
					save.name = save.name, ...))
	
	if(!save.output){
		sol = new("fMoments",
				moments = mom,
				model = xmodel)
	} else{
		sol = new("fMoments",
				moments = list(),
				model = xmodel)
	}
	return(sol)
}

mom.gogarch = function(Data, spec, n.ahead = 1, roll  = 0, 
		solver = "solnp", solver.control = list(), fit.control = list(), 
		cluster = NULL, save.output = FALSE, save.dir = getwd(), 
		save.name = NULL, ...)
{
	fit = gogarchfit(spec, data = Data, out.sample = roll, solver = solver, 
			cluster = cluster, fit.control = fit.control, solver.control = solver.control, ...)
	A = fit@mfit$A
	K = fit@mfit$K	
	T = fit@model$modeldata$T
	T0 = fit@model$modeldata$index[(T):(T+roll)]
	indexf = c(T0[-1], generatefwd(tail(T0, 1), length.out=1, by = fit@model$modeldata$period))
	nam = fit@model$modeldata$asset.names
	m  = NCOL(Data)
	# sim will have an analytical forecast and simulated scenario
	forc = gogarchforecast(fit, n.ahead = n.ahead, n.roll = roll, cluster = cluster)
	forecastMu = matrix(forc@mforecast$mu, ncol = m, nrow = roll+1, byrow=TRUE)
	forecastCov = rcov(forc)
	colnames(forecastMu) = nam
	rownames(forecastMu) = as.character(indexf)
	forecastCov = array(unlist(rcov(forc)), dim=c(m,m,roll+1), dimnames=list(nam, nam, as.character(indexf)))
	
	if(spec@model$modeldesc$distribution != "mvnorm"){
		forecastM3 = rcoskew(forc, standardize  = FALSE, roll="all")
		forecastM4 = rcokurt(forc, standardize  = FALSE, roll="all")
		dimnames(forecastM3) = list(NULL, NULL, as.character(indexf))
		dimnames(forecastM4) = list(NULL, NULL, as.character(indexf))
	} else{
		forecastM3 = NULL
		forecastM4 = NULL
	}
	if(save.output){
		olddir = getwd()
		setwd(save.dir)
		mom = list(forecastMu = forecastMu, forecastCov = forecastCov, 
				forecastM3 = forecastM3, forecastM4 = forecastM4,
				gogarch.options = list(A = A, K = K), n.ahead = n.ahead, 
				roll = roll, model = "gogarch", index = indexf)
		eval(parse(text = paste("save(mom, file = '", save.name,".rda')",sep="")))
		setwd(olddir)
		return(1)
	} else{
		return(list(forecastMu = forecastMu, forecastCov = forecastCov, 
						forecastM3 = forecastM3, forecastM4 = forecastM4,
						gogarch.options = list(A = A, K = K), index = indexf))
	}
}

mom.dcc = function(Data, spec, n.ahead = 1, roll  = 0, 
		solver = "solnp", solver.control = list(), fit.control = list(), 
		cluster = NULL, save.output = FALSE, save.dir = getwd(), 
		save.name = NULL, ...)
{
	fit = dccfit(spec, data = Data, out.sample = roll, solver = solver, 
			cluster = cluster, fit.control = fit.control, 
			solver.control = solver.control, ...)
	T0 = fit@model$modeldata$index[(T):(T+roll)]
	indexf = c(T0[-1], generatefwd(tail(T0, 1), length.out=1, by = fit@model$modeldata$period))
	nam = fit@model$modeldata$asset.names
	m  = NCOL(Data)
	# sim will have an analytical forecast and simulated scenario
	forc = dccforecast(fit, n.ahead = n.ahead, n.roll = roll, cluster = cluster)	
	forecastMu = matrix(forc@mforecast$mu, ncol = m, nrow = roll+1, byrow=TRUE)
	forecastCov = rcov(forc)
	colnames(forecastMu) = nam
	rownames(forecastMu) = as.character(indexf)
	forecastCov = array(unlist(rcov(forc)), dim=c(m,m,roll+1), dimnames=list(nam, nam, as.character(indexf)))	
	if(spec@model$modeldesc$distribution == "mvt"){
		skewness = 0
		kurtosis = unname(6/(coef(fit)["[Joint]mshape"] - 4) + 4)
	} else{
		kurtosis = NULL
		skewness = NULL
	}
	if(save.output){
		olddir = getwd()
		setwd(save.dir)
		mom = list(forecastMu = forecastMu, forecastCov = forecastCov, 
				skewness = skewness, kurtosis = kurtosis,
				n.ahead = n.ahead, roll = roll, model = "dcc", index = indexf)
		eval(parse(text = paste("save(mom, file = '",save.name,".rda')",sep="")))
		setwd(olddir)
		return(1)
	} else{
		return(list(forecastMu = forecastMu, forecastCov = forecastCov, 
						skewness = skewness, kurtosis = kurtosis, index = indexf))		
	}
}

####----------------------------------------------------------------------------
.fscenario = function(Data, sim = 1000, roll = 0, 
		model = c("gogarch", "dcc", "cgarch", "var", "mdist"), spec = NULL,
		var.model = list(
				lag = 1, lag.max = NULL, 
				lag.criterion = c("AIC", "HQ", "SC", "FPE"), 
				robust = FALSE, 
				robust.control = list("gamma" = 0.25, "delta" = 0.01, "nc" = 10, "ns" = 500)),
		mdist.model = list(distribution = c("mvn", "mvt", "manig"), AR = TRUE, lag = 1),
		spd.control = list(lower = 0.1, upper = 0.9, type = "pwm", kernel = "epanech"),
		cov.method = c("ML", "LW", "EWMA", "MVE", "MCD", "MVT", "BS"),
		cov.options = list(shrinkage=-1, lambda = 0.96),
		solver = "solnp", solver.control = list(), fit.control = list(eval.se = 1), 
		cluster = NULL, save.output = FALSE, save.dir = getwd(), 
		save.name = paste("S", sample(1:1000, 1), sep= ""), rseed  = NULL, ...)
{
	# ... additional parameters passed for example to gogarchfit routine (gfun...)
	tmp = match(tolower(model[1]), c("gogarch", "dcc", "cgarch", "var", "mdist"))
	model = model[1]
	sim = max(1, as.integer(sim))
	roll = max(0, as.integer(roll))
	m = NCOL(Data)
	if(is.na(tmp)) stop("\nunrecongnized model choice.")
	if(tolower(model) == "gogarch"){
		if(!is(spec, "goGARCHspec")) stop("\ngogarch chosen but spec not of goGARCHspec class")
		asset.names = colnames(Data)
		Scen = scenario.gogarch(Data = Data, spec = spec, sim = sim, 
				roll = roll, solver = solver, solver.control = solver.control,
				fit.control = fit.control, cluster = cluster,
				rseed = rseed, save.output = save.output, save.dir = save.dir, 
				save.name = save.name, ...)
		xmodel = list(asset.names = asset.names, assets = m, model = "gogarch", 
				sim = sim, roll = roll, save.output = save.output, save.dir = save.dir,
				save.name = save.name)
		if(!save.output){
			sol = new("fScenario",
					scenario = Scen,
					model = xmodel)
		} else{
			sol = new("fScenario",
					scenario = list(),
					model = xmodel)
		}
	} else if(tolower(model) == "dcc"){
		if(!is(spec, "DCCspec")) stop("\ndcc chosen but spec not of DCCspec class")
		asset.names = colnames(Data)
		Scen = scenario.dcc(Data = Data, spec = spec, sim = sim, 
				roll = roll, solver = solver, solver.control = solver.control,
				fit.control = fit.control, cluster = cluster,
				rseed = rseed, save.output = save.output, save.dir = save.dir, 
				save.name = save.name, ...)
		xmodel = list(asset.names = asset.names, assets = m, model = "dcc", 
				sim = sim, roll = roll, save.output = save.output, save.dir = save.dir,
				save.name = save.name)
		if(!save.output){
			sol = new("fScenario",
					scenario = Scen,
					model = xmodel)
		} else{
			sol = new("fScenario",
					scenario = list(),
					model = xmodel)
		}
	} else if(tolower(model) == "cgarch"){
		if(!is(spec, "cGARCHspec")) stop("\ncgarch chosen but spec not of cGARCHspec class")
		m = NCOL(Data)[2]
		asset.names = colnames(Data)
		Scen = scenario.cgarch(Data = Data, spec = spec, 
				spd.control = spd.control, sim = sim, roll = roll, 
				solver = solver, solver.control = solver.control,
				fit.control = fit.control, cluster = cluster,
				rseed = rseed, save.output = save.output, save.dir = save.dir, 
				save.name = save.name, ...)
		xmodel = list(asset.names = asset.names, assets = m, model = "cgarch", 
				sim = sim, roll = roll, save.output = save.output, save.dir = save.dir,
				save.name = save.name)
		if(!save.output){
			sol = new("fScenario",
					scenario = Scen,
					model = xmodel)
		} else{
			sol = new("fScenario",
					scenario = list(),
					model = xmodel)
		}
	} else if(tolower(model) == "var"){
		asset.names = colnames(Data)
		Scen = scenario.var(Data = Data, sim = sim, roll = roll, model = var.model, 
				cov.method = cov.method, cov.options = cov.options, rseed = rseed, 
				save.output = save.output, save.dir = save.dir, save.name = save.name)
		xmodel = list(asset.names = asset.names, assets = m, model = "var", 
				sim = sim, roll = roll, save.output = save.output, save.dir = save.dir,
				save.name = save.name)
		if(!save.output){
			sol = new("fScenario",
					scenario = Scen,
					model = xmodel)
		} else{
			sol = new("fScenario",
					scenario = list(),
					model = xmodel)
		}
	} else if(tolower(model) == "mdist"){
		asset.names = colnames(Data)
		Scen = scenario.mdist(Data = Data, sim = sim, roll = roll, model = mdist.model, 
				rseed = rseed, save.output = save.output, save.dir = save.dir,
				save.name = save.name)
		if(!save.output){
			sol = new("fScenario",
					scenario = Scen,
					model = xmodel)
		} else{
			sol = new("fScenario",
					scenario = list(),
					model = xmodel)
		}
	} else{
		sol = NULL
	}
	return(sol)
}

scenario.gogarch = function(Data, spec, sim = 1000, roll = 0, solver = "solnp", 
		solver.control = list(), fit.control = list(stationarity = 1), 
		cluster = NULL, rseed = NULL, save.output = FALSE, save.dir = getwd(), 
		save.name = NULL, ...)
{
	fit = gogarchfit(spec, data = Data, out.sample = roll, solver = solver, 
			cluster = cluster, fit.control = fit.control, 
			solver.control = solver.control, ...)
	T = fit@model$modeldata$T
	T0 = fit@model$modeldata$index[(T):(T+roll)]
	indexf = c(T0[-1], generatefwd(tail(T0, 1), length.out=1, by = fit@model$modeldata$period))
	nam = fit@model$modeldata$asset.names
	m = NCOL(Data)
	#xfit<<-fit
	A = fit@mfit$A
	K = fit@mfit$K
	W = fit@mfit$W
	fsim = vector(mode="list", length = roll)
	# sim will have an analytical forecast and simulated scenario
	forc = gogarchforecast(fit, n.ahead = 1, n.roll = roll, cluster = cluster)
	forecastMu = forecastMu = matrix(forc@mforecast$mu, ncol = m, nrow = roll+1, byrow=TRUE)
	forecastCov = rcov(forc)
	colnames(forecastMu) = nam
	rownames(forecastMu) = as.character(indexf)
	forecastCov = array(unlist(rcov(forc)), dim=c(m,m,roll+1), dimnames=list(nam, nam, as.character(indexf)))
	# max lag for mean.model = 2
	p = sum(fit@model$modelinc[1:3])	
	xseed = simRes = simMu = vector(mode = "list", length = roll+1)
	filt = gogarchfilter(fit, data = Data, out.sample = 0, n.old = T, 
			cluster = cluster)
	# use parallel here:
	if(!is.null(rseed)){
		rseed = as.numeric(rseed)
		if(length(rseed)==(roll+1)) zseed = rseed
		if(length(rseed)>(roll+1)) zseed = rseed[1:(roll+1)]
		if(length(rseed)<(roll+1)) zseed = rseed[1]+seq_len(roll)
	} else{
		zseed = as.integer( runif( roll+1, 0, as.integer(Sys.time()) ) )
	}
	for(i in 1:(roll+1)){
		preres = matrix(fit@mfit$Y[(T-p+i):(T-1+i),,drop=FALSE], ncol = NCOL(fit@mfit$Y), byrow = TRUE)
		presigma = matrix(filt@mfilter$factor.sigmas[(T-p+i):(T-1+i),,drop=FALSE], ncol = NCOL(fit@mfit$Y), byrow = TRUE)
		prereturns = as.matrix(fit@model$modeldata$data[(T-p+i):(T-1+i),,drop=FALSE])
		fsim = gogarchsim(fit, n.sim = 1, m.sim = sim, startMethod = "sample",
				preresiduals = preres, presigma = presigma, 
				prereturns = prereturns, rseed = zseed[i], cluster = cluster)
		simMu[[i]] = t(sapply(fsim@msim$seriesSim, FUN = function(x) x))
		simRes[[i]] = t(sapply(fsim@msim$residSim, FUN = function(x) x))
		xseed[[i]] = fsim@msim$rseed
	}
	if(save.output){
		olddir = getwd()
		setwd(save.dir)
		scenario = list(simMu = simMu, simRes = simRes, forecastMu = forecastMu, 
				forecastCov = forecastCov, gogarch.options = list(A = A, K = K), 
				rseed = xseed, sim = sim, roll = roll, model = "gogarch", index = indexf)
		eval(parse(text = paste("save(scenario, file = '",save.name,".rda')",sep="")))
		setwd(olddir)
		return(1)
	} else{
		return(list(simMu = simMu, simRes = simRes, forecastMu = forecastMu, 
						forecastCov = forecastCov, 
						gogarch.options = list(A = A, K = K, W = W), rseed = xseed,
						index = indexf))	
	}
}

scenario.dcc = function(Data, spec, sim, roll, solver = "solnp", 
		fit.control = list(eval.se = FALSE), solver.control = list(), 
		cluster = NULL, rseed = NULL, save.output = FALSE, save.dir = getwd(), 
		save.name = NULL, debug = FALSE, ...)
{
	pars = list(...)
	modv = spec@umodel$modeldesc$vmodel
	if(is.null(pars$fit)) xfit = NULL else xfit = pars$fit
	if(is.null(pars$VAR.fit)) VAR.fit = NULL else VAR.fit = pars$VAR.fit
	if(any(modv=="realGARCH")){
		if(is.null(pars$realizedVol)){
			stop("\nfscenario-->error: realizedVol required for realGARCH model.\n")
		} else{
			realizedVol = pars$realizedVol
		}
	} else{
		realizedVol = NULL
	}
	fit = dccfit(spec, data =  Data, out.sample = roll, solver = solver, 
			solver.control = list(), fit.control = fit.control, cluster = cluster,
			fit = xfit, VAR.fit = VAR.fit, realizedVol = realizedVol)
	
	T = fit@model$modeldata$T
	T0 = fit@model$modeldata$index[(T):(T+roll)]
	indexf = c(T0[-1], generatefwd(tail(T0, 1), length.out=1, by = fit@model$modeldata$period))
	nam = fit@model$modeldata$asset.names
	m  = NCOL(Data)
	
	fsim = vector(mode="list", length = roll)
	p = spec@model$maxgarchOrder
	# sim will have an analytical forecast and simulated scenario
	forc = dccforecast(fit, n.ahead = 1, n.roll = roll, cluster = cluster)
	forecastMu = t(apply(forc@mforecast$mu, 3, FUN = function(x) x))
	colnames(forecastMu) = nam
	rownames(forecastMu) = as.character(indexf)
	forecastCov = array(unlist(rcov(forc)), dim=c(m,m,roll+1), dimnames=list(nam, nam, as.character(indexf)))
	xseed = simRes = simMu = vector(mode = "list", length = roll+1)
	rcovfilt = rcorfilt = rcovsim = rcorsim = array(NA, dim = c(m,m,roll+1))
	if(spec@model$modelinc[1]>0) varcoef = fit@model$varcoef else varcoef = NULL
	model = fit@model
	umodel  = model$umodel
	mspec = .makemultispec(umodel$modelinc, umodel$modeldesc$vmodel, 
			umodel$modeldesc$vsubmodel, umodel$modeldata$mexdata, 
			umodel$modeldata$vexdata, umodel$start.pars, 
			umodel$fixed.pars, NULL)
	
	midx = fit@model$midx
	mpars = fit@model$mpars
	for(i in 1:m){
		setfixed(mspec@spec[[i]])<-as.list(mpars[midx[,i]==1, i])
	}
	dccfix = as.list(coef(fit, "dcc"))
	specf = dccspec(uspec = mspec,  VAR = ifelse(spec@model$modelinc[1]>0, TRUE, FALSE), 
			lag = spec@model$modelinc[1], dccOrder = model$modelinc[3:4], 
			model = spec@model$DCC, groups = spec@model$fdccindex, 
			distribution = model$modeldesc$distribution, fixed.pars = dccfix)
	filt = dccfilter(specf, data = Data, out.sample = 0, filter.control = list(n.old = T),
			cluster = cluster, varcoef = varcoef, realizedVol = realizedVol)
	sig = sigma(filt)
	res = residuals(filt)
	C = rcor(filt, type = "Q")
	Z = filt@mfilter$stdresid
	if(!is.null(rseed)){
		rseed = as.numeric(rseed)
		if(length(rseed) == (roll+1)) zseed = rseed
		if(length(rseed) >  (roll+1)) zseed = rseed[1:(roll+1)]
		if(length(rseed) <  (roll+1)) zseed = rseed[1]+seq_len(roll)
	} else{
		zseed = as.integer( runif( roll+1, 0, as.integer(Sys.time()) ) )
	}
	for(i in 1:(roll+1)){
		preQ = C[,,(T+i-1)]
		presigma = sig[(T-p+i):(T-1+i), , drop=FALSE]
		if(any(modv=="realGARCH")) prerealized = coredata(realizedVol)[(T-p+i):(T-1+i), , drop=FALSE] else prerealized = NULL
		preresiduals = res[(T-p+i):(T-1+i), , drop=FALSE]
		prereturns = as.matrix(Data[(T+i-p):(T+i-1),], ncol = m)
		preZ = matrix(Z[(T-p+i):(T-1+i),], ncol = m)
		fsim = dccsim(fitORspec = fit, n.sim = 1, n.start = 0, m.sim = sim, startMethod="sample",
				presigma = presigma, preresiduals = preresiduals, 
				prereturns = prereturns, preQ = preQ, preZ = preZ, Qbar = fit@mfit$Qbar, 
				rseed = zseed[i], cluster = cluster, prerealized = prerealized)
		simMu[[i]] = t(sapply(fsim@msim$simX, FUN = function(x) x))
		simZ = sapply(fsim@msim$simZ, FUN = function(x) tail(x,1))		
		HH = array(unlist(fsim@msim$simH), dim=c(m,m,sim))
		simRes[[i]] = .Call("Cov2Res", HH, simZ, as.integer(c(sim, m)), PACKAGE="rmgarch")
		xseed[[i]] = fsim@msim$rseed
		# simMu - simRes == forecastMu
	}
	if(save.output){
		olddir = getwd()
		setwd(save.dir)
		scenario = list(simMu = simMu, simRes = simRes, forecastMu = forecastMu, 
				forecastCov = forecastCov, rseed = xseed, sim = sim, roll = roll, 
				model = "dcc", index = indexf)
		eval(parse(text = paste("save(scenario, file = '",save.name,".rda')",sep="")))		
		setwd(olddir)
		return(1)
	} else{
		return(list(simMu = simMu, simRes = simRes, forecastMu = forecastMu, 
						forecastCov = forecastCov, rseed = xseed, index = indexf))
	}
}

scenario.cgarch = function(Data, spec, spd.control, sim, roll, solver = "solnp", 
		fit.control = list(eval.se = FALSE), solver.control = list(), 
		cluster = NULL, rseed = NULL, save.output = FALSE, save.dir = getwd(), 
		save.name = NULL, debug = FALSE, ...)
{
	pars = list(...)
	modv = spec@umodel$modeldesc$vmodel
	if(is.null(pars$fit)) xfit = NULL else xfit = pars$fit
	if(is.null(pars$VAR.fit)) VAR.fit = NULL else VAR.fit = pars$VAR.fit
	if(any(modv=="realGARCH")){
		if(is.null(pars$realizedVol)){
			stop("\nfscenario-->error: realizedVol required for realGARCH model.\n")
		} else{
			realizedVol = pars$realizedVol
		}
	} else{
		realizedVol = NULL
	}
	fit = cgarchfit(spec, data = Data, spd.control = spd.control, 
			out.sample = roll, solver = solver, 
			solver.control = solver.control, fit.control = fit.control, 
			cluster = cluster, fit = xfit, VAR.fit = VAR.fit, realizedVol = realizedVol, ...)
	fsim = vector(mode="list", length = roll)
	p = spec@model$maxgarchOrder
	T = fit@model$modeldata$T
	T0 = fit@model$modeldata$index[(T):(T+roll)]
	indexf = c(T0[-1], generatefwd(tail(T0, 1), length.out=1, by = fit@model$modeldata$period))
	xseed = simRes = simMu = vector(mode = "list", length = roll+1)
	m  = NCOL(Data)
	rcovfilt = rcorfilt = rcovsim = rcorsim = array(NA, dim = c(m,m,roll+1))
	if(spec@model$modelinc[1]>0) varcoef = fit@model$varcoef else varcoef = NULL
	
	model = fit@model
	umodel  = model$umodel
	mspec = .makemultispec(umodel$modelinc, umodel$modeldesc$vmodel, umodel$modeldesc$vsubmodel, 
			umodel$modeldata$mexdata, umodel$modeldata$vexdata, umodel$start.pars, 
			umodel$fixed.pars, NULL)
	
	midx = fit@model$midx
	mpars = fit@model$mpars
	for(i in 1:m){
		setfixed(mspec@spec[[i]])<-as.list(mpars[midx[,i]==1, i])
	}
	dccfix = as.list(coef(fit, "dcc"))
	specf = cgarchspec(uspec = mspec,  VAR = ifelse(spec@model$modelinc[1]>0, TRUE, FALSE), 
			lag = spec@model$modelinc[1], dccOrder = model$modelinc[4:5], 
			asymmetric = ifelse(spec@model$modelinc[6]>0, TRUE, FALSE), 
			distribution.model = list(copula = model$modeldesc$distribution, 
					method = model$modeldesc$cor.method, 
					time.varying = model$modeldesc$timecopula,
					transformation = model$modeldesc$transformation), 
			fixed.pars = dccfix)
	# we really only need to use this if roll>0
	filt = cgarchfilter(specf, data = Data, out.sample = 0, filter.control = list(n.old = T),
			spd.control = spd.control, cluster = cluster, varcoef = varcoef,
			realizedVol = realizedVol)
	if(roll>0){
		forecastMu = rbind(tail(filt@model$mu, roll), matrix(NA, ncol = m))
	} else{
		forecastMu = matrix(NA, ncol = m)
	}
	sig = coredata(sigma(filt))
	res = coredata(residuals(filt))
	R = rcor(filt)
	Z = filt@mfilter$stdresid
	Q = filt@mfilter$Qt
	if(!is.null(rseed)){
		rseed = as.integer(rseed)
		if(length(rseed)==(roll+1)) zseed = rseed
		if(length(rseed)>(roll+1)) zseed = rseed[1:(roll+1)]
		if(length(rseed)<(roll+1)) zseed = rseed[1]+seq_len(roll)
	} else{
		zseed = as.integer( runif( roll+1, 0, as.integer(Sys.time()) ) )
	}
	# distinguish between static and time varying copula
	if(spec@model$modeldesc$timecopula){
		for(i in 1:(roll+1)){
			preR = R[,,(T+i-1)]
			# extra check
			diag(preR) = 1
			preQ = Q[[(T+i-1)]]
			presigma = sig[(T-p+i):(T-1+i),, drop=FALSE]
			if(any(modv=="realGARCH")) prerealized = coredata(realizedVol)[(T-p+i):(T-1+i), , drop=FALSE] else prerealized = NULL
			preresiduals = res[(T-p+i):(T-1+i),, drop=FALSE]
			prereturns = as.matrix(Data[(T-p+i):(T-1+i),], ncol = m)
			preZ = matrix(Z[(T-p+i):(T-1+i),], ncol = m)
			fsim = cgarchsim(fit, n.sim = 1, n.start = 0, m.sim = sim, 
					startMethod = "sample", presigma = presigma, 
					preresiduals = preresiduals, prereturns = prereturns, 
					preR = preR, preQ = preQ, preZ = preZ, mexsimdata = NULL, 
					vexsimdata = NULL, cluster = cluster, rseed = zseed[i],
					prerealized = prerealized)
			simMu[[i]] = t(sapply(fsim@msim$simX, FUN = function(x) x))
			simZ = t(apply(fsim@msim$simZ, 3, FUN = function(x) tail(x, 1)))
			HH = array(unlist(fsim@msim$simH), dim=c(m,m,sim))
			simRes[[i]] = .Call("Cov2Res", HH, simZ, as.integer(c(sim, m)), PACKAGE="rmgarch")
			xseed[[i]] = fsim@msim$rseed
		}
	} else{
		for(i in 1:(roll+1)){
			preR = R
			# extra check
			diag(preR) = 1
			presigma = sig[(T-p+i):(T-1+i),, drop=FALSE]
			if(any(modv=="realGARCH")) prerealized = coredata(realizedVol)[(T-p+i):(T-1+i), , drop=FALSE] else prerealized = NULL
			
			preresiduals = res[(T-p+i):(T-1+i),, drop=FALSE]
			prereturns = as.matrix(Data[(T-p+i):(T-1+i),], ncol = m)
			preZ = matrix(Z[(T-p+i):(T-1+i),], ncol = m)
			fsim = cgarchsim(fit, n.sim = 1, n.start = 0, m.sim = sim, 
					startMethod = "sample", presigma = presigma, 
					preresiduals = preresiduals, prereturns = prereturns, 
					preR = preR, preQ = preQ, preZ = preZ, mexsimdata = NULL, 
					vexsimdata = NULL, cluster = cluster, rseed = zseed[i],
					prerealized = prerealized)
			simMu[[i]] = t(sapply(fsim@msim$simX, FUN = function(x) x))
			simZ = t(apply(fsim@msim$simZ, 3, FUN = function(x) tail(x, 1)))
			HH = array(unlist(fsim@msim$simH), dim=c(m,m,sim))
			simRes[[i]] = .Call("Cov2Res", HH, simZ, as.integer(c(sim, m)), PACKAGE="rmgarch")
			xseed[[i]] = fsim@msim$rseed
		}
	}
	if(save.output){
		olddir = getwd()
		setwd(save.dir)
		scenario = list(simMu = simMu, simRes = simRes, forecastMu = forecastMu, 
				rseed = xseed, sim = sim, roll = roll, model = "cgarch", index = indexf)
		eval(parse(text = paste("save(scenario, file = '",save.name,".rda')",sep="")))		
		setwd(olddir)
		return(1)
	} else{
		return(list(simMu = simMu, simRes = simRes, forecastMu = forecastMu,
						rseed = xseed, index = indexf))
	}
}


scenario.var = function(Data, sim, roll, model = list(lag = 1, lag.max = NULL, 
				lag.criterion = c("AIC", "HQ", "SC", "FPE"), robust = FALSE, 
				robust.control = list("gamma" = 0.25, "delta" = 0.01, "nc" = 10, "ns" = 500)),
		cov.method = c("ML", "LW", "EWMA", "MVE", "MCD", "MVT", "BS"),
		cov.options = list(shrinkage=-1, lambda = 0.96),
		rseed = NULL, save.output = FALSE, save.dir = getwd(), save.name = NULL)
{
	if(is.null(rseed)) rseed = as.integer(Sys.time())
	rseed = as.numeric(rseed)
	Data = as.matrix(Data)
	n = dim(Data)[1]
	m = dim(Data)[2]
	T = n - roll
	X = Data[1:T, , drop = FALSE]
	if( !is.null(model$lag.max) ){
		ic = model$lag.criterion[1]
		mp = .varxselect(y = X, lag.max = model$lag.max, exogen = NULL)$selection
		mp = as.numeric( mp[which(substr(names(mp), 1, 2) == substr(ic, 1, 2))] )
	} else {
		mp = max(1, model$lag)
	}
	rb = model$robust.control
	fit = varxfit(X, p = mp, exogen = NULL, robust = model$robust, 
			gamma = rb$gamma, delta = rb$delta, nc = rb$nc, ns = rb$ns, 
			postpad = c("none", "constant", "zero", "NA")[2])
	varcoef = fit$Bcoef
	forc = varxforecast(Data, p = mp, Bcoef = fit$Bcoef, out.sample = roll, 
			n.ahead = 1, n.roll = roll, mregfor = NULL)
	filt = varxfilter(Data, p = mp, Bcoef = fit$Bcoef, postpad = "constant", 
			exogen = NULL)
	
	forecastMu = t(apply(forc, 3, FUN = function(x) x))
	forecastCov = array(NA, dim = c(m,m,roll+1))
	res = fit$xresiduals
	preret = tail(X, mp)
	preres = tail(res, mp)
	xseed = simRes = simMu = vector(mode = "list", length = roll+1)
	if(!is.null(rseed)){
		rseed = as.numeric(rseed)
		if(length(rseed)==(roll+1)) zseed = rseed
		if(length(rseed)>(roll+1)) zseed = rseed[1:(roll+1)]
		if(length(rseed)<(roll+1)) zseed = rseed[1]+seq_len(roll)
	} else{
		zseed = as.integer( runif( roll+1, 0, as.integer(Sys.time()) ) )
	}
	for(i in 1:(roll+1)){
		if(cov.method[1]!="ML"){
			fS = fun.cov(Data = res, method = cov.method, 
					shrinkage=cov.options$shrinkage, 
					lambda = cov.options$lambda, 
					demean = FALSE)$S
		} else{
			fS = (t(res) %*% (res))/T
		}
		set.seed(zseed[i])
		xseed[[i]] = zseed
		Z = .rmvnorm(sim, mean = rep(0, m), sigma = fS)
		tmp = varxsimXX(X = Data[1:(T+1-i), ], Bcoef = varcoef, p = mp, 
				m.sim = sim, prereturns = preret, resids = Z, NULL)
		simMu[[i]] = tmp
		simRes[[i]] = Z
		forecastCov[,,i] = fS
		if(i<(roll+1)){ 
			preres = filt$xresiduals[(T+i-mp+1):(T+i), , drop = FALSE]
			preret = Data[(T+i-mp+1):(T+i), , drop = FALSE]
			res = filt$xresiduals[1:(T+i), ]
		}
	}
	if(save.output){
		olddir = getwd()
		setwd(save.dir)
		scenario = list(simMu = simMu, simRes = simRes, forecastMu = forecastMu, 
				forecastCov = forecastCov, rseed = xseed, sim = sim, roll = roll, 
				model = "var")
		eval(parse(text = paste("save(scenario, file = '",save.name,".rda')",sep="")))
		setwd(olddir)
		return(1)
	} else{
		return(list(simMu = simMu, simRes = simRes, forecastMu = forecastMu, 
						rseed = xseed))		
	}
}

scenario.mdist = function(Data, sim, roll, model, rseed, save.output = FALSE, 
		save.dir = getwd(), save.name = NULL)
{
	stop("\nNot yet implemented")
}


goget = function(object, arg){
	UseMethod("goget")
}

.gogetscen <- function(object, arg){
	valid.choices = "scenario"
	tmp = match.arg(tolower(arg[1]), valid.choices)
	scenario = object@scenario$simMu
	ans = NA
	eval(parse(text = paste("ans=",tmp,sep="")))
	return(ans)
}

setMethod("goget", signature(object = "fScenario"), definition = .gogetscen)



goload  = function(object, ...)
{
	UseMethod("goload")
}

.goload1 = function(object){
	if(object@model$save.output){
		oldir = getwd()
		scenario = list()
		setwd(object@model$save.dir)
		eval(parse(text = paste("load(file='",object@model$save.name, ".rda')", sep = "")))
		
		object@model$sim = scenario$sim
		object@model$roll = scenario$roll
		object@model$model = scenario$model
		scenario$model = NULL
		scenario$roll = NULL
		scenario$sim = NULL
		object@scenario = scenario
		object@model$save.output = FALSE
		object@model$assets = dim(scenario$simMu[[1]])[2]
		if(object@model$asset.names[1]=="") object@model$asset.names = paste("A_",1:object@model$assets,sep="")
		setwd(oldir)
	}
	return(object)
}
setMethod("goload", signature(object = "fScenario"), .goload1)



.goload2 = function(object){
	if(object@model$save.output){
		oldir = getwd()
		mom = list()
		setwd(object@model$save.dir)
		eval(parse(text = paste("load(file='",object@model$save.name, ".rda')", sep = "")))
		object@model$n.ahead = mom$n.ahead
		object@model$roll = mom$roll
		object@model$model = mom$model
		mom$model = NULL
		mom$roll = NULL
		mom$n.ahead = NULL
		object@moments = mom
		object@model$assets = dim(mom[[1]])[2]
		object@model$save.output = FALSE
		if(object@model$asset.names[1]=="") object@model$asset.names = paste("A_",1:object@model$assets,sep="")
		setwd(oldir)
	}
	return(object)
}
setMethod("goload", signature(object = "fMoments"), .goload2)

# covariance functions
fun.cov = function(Data, method = c("LW", "EWMA", "MVE", "MCD", "MVT", "BS"), 
		shrinkage=-1, lambda = 0.96, demean = FALSE){
	ans = switch(tolower(method),
			lw = lw.cov(Data, shrinkage, demean),
			ewma = ewma.cov(Data, lambda, demean),
			mve = rob.cov(Data, "mve", demean),
			mcd = rob.cov(Data, "mcd", demean),
			mvt = rob.cov(Data, "mcd", demean),
			bs = bs.cov(Data))
	return( ans )
}

# Ledoit and Wolfe Shrinkage Estimator
lw.cov = function(X, shrink = -1, demean = TRUE){
	n = dim(X)[1]
	m = dim(X)[2]
	meanx = colMeans(X)
	if(demean) X = scale(X, scale = FALSE)
	# compute sample covariance matrix
	samplecov = (t(X)%*%X)/n
	# compute prior
	meanvar = mean(diag(samplecov))
	prior = meanvar * diag(m)
	if(shrink == -1){
		# compute shrinkage parameters
		# p in paper 
		y = X^2
		phiMat = (t(y)%*%y)/n - 2*(t(X)%*%X)*samplecov/n + samplecov^2
		phi = sum(apply(phiMat, 1, "sum"))
		# c in paper
		cgamma = norm(samplecov-prior,'F')^2
		# shrinkage constant
		kappa = phi/cgamma
		shrinkage = max(0, min(1, kappa/n))
	} else{
		shrinkage = shrink
	}
	sigma = shrinkage * prior + (1 - shrinkage)*samplecov
	return(list(S = sigma, par = shrinkage))
}

ewma.cov = function(X, lambda = 0.96, demean = TRUE)
{
	n = dim(X)[1]
	i = (0:(n-1))
	ewma.wt = lambda^i
	ewma.wt = ewma.wt/sum(ewma.wt)
	covm = cov.wt(X, wt = rev(ewma.wt), center = demean)$cov
	return(list(S = covm, par = lambda))
}

rob.cov = function(X, method = c("mve", "mcd", "mvt"), demean = TRUE){
	S = switch(tolower(method), 
			mve = cov.rob(x = X, method = "mve"),
			mcd = cov.rob(x = X, method = "mcd"),
			mvt = cov.trob(x = X, center = demean))
	return(list(S = S$cov, par = NA))
}

bs.cov = function(X)
{
	# Bayes Stein estimator
	# Alexios Ghalanos 2008
	# This function encapsulates an example of shrinking the returns 
	#   and covariance using Bayes-Stein shrinkage as described in 
	#   Jorion, 1986
	mu = as.matrix(apply(X, 2, FUN = function(x) mean(x)))
	S = cov(X)
	m = dim(X)[2]
	n = dim(X)[1]
	one = as.matrix(rep(1, m))
	a = solve(S, one)
	# Constant non informative prior
	mu.prior = one * as.numeric(t(mu) %*% a/t(one) %*% a)
	S.inv = solve(S)
	d = t(mu - mu.prior) %*% S.inv %*% (mu - mu.prior)
	d = as.numeric(d)
	lambda = (m + 2) / d
	w = lambda / (n+lambda)
	mu.pred = (1 - w) * mu + w * mu.prior
	
	wc1 = 1 / (n + lambda)
	wc2 = lambda*(n-1) / (n*(n+lambda)*(n - m - 2))
	wc2 = wc2 / as.numeric(t(one) %*% a)
	V.post = wc1 * S + wc2 * one %*% t(one)
	V.pred = S + V.post
	sigma.post = sqrt(diag(V.post))
	sigma.pred = sqrt(diag(V.pred))
	
	return(list(S = V.pred, par = mu.pred[,1]))
}

###############################################################################
fmoments = function(spec, Data, n.ahead = 1, roll  = 0, 
		solver = "solnp", solver.control = list(), 
		fit.control = list(eval.se=FALSE), 
		cluster = NULL, save.output = FALSE, save.dir = getwd(), 
		save.name = paste("M", sample(1:1000, 1), sep= ""), ...)
{
	UseMethod("fmoments")
}

setMethod("fmoments", definition = .fmoments)

fscenario = function(Data, sim = 1000, roll = 0, 
		model = c("gogarch", "dcc", "cgarch", "var", "mdist"), spec = NULL,
		var.model = list(
				lag = 1, lag.max = NULL, 
				lag.criterion = c("AIC", "HQ", "SC", "FPE"), 
				robust = FALSE, 
				robust.control = list("gamma" = 0.25, "delta" = 0.01, 
						"nc" = 10, "ns" = 500)),
		mdist.model = list(distribution = c("mvn", "mvt", "manig"), AR = TRUE, 
				lag = 1),
		spd.control = list(lower = 0.1, upper = 0.9, type = "pwm", 
				kernel = "epanech"),
		cov.method = c("ML", "LW", "EWMA", "MVE", "MCD", "MVT", "BS"),
		cov.options = list(shrinkage=-1, lambda = 0.96),
		solver = "solnp", solver.control = list(), 
		fit.control = list(eval.se=FALSE), cluster =  NULL, 
		save.output = FALSE, save.dir = getwd(), 
		save.name = paste("S", sample(1:1000, 1), sep = ""), 
		rseed  = NULL, ...)
{
	UseMethod("fscenario")
}

setMethod("fscenario", definition = .fscenario)


.fitted.fscenario = function(object){
	if(length(object@scenario)>0){
		roll = object@model$roll+1
		m = NCOL(object@scenario$simMu[[1]])
		n = object@model$sim
		index = as.character(object@scenario$index)
		nam = object@model$asset.names
		ans = array(data = unlist(object@scenario$simMu), dim=c(n, m, roll), dimnames=list(NULL, nam, index))
		#if(object@model$model!="cgarch") attr(ans, "forecast")<-object@scenario$forecastMu
		return(ans)
	} else{
		stop("\nrmgarch-->error: scenario slot not populated with data.")
	}
}
setMethod("fitted", signature(object = "fScenario"), .fitted.fscenario)

.fitted.fmoments = function(object){
	if(length(object@moments)>0){
		return(object@moments$forecastMu)
	} else{
		stop("\nrmgarch-->error: moments slot not populated with data.")
	}
}
setMethod("fitted", signature(object = "fMoments"), .fitted.fmoments)

.rcov.fmoments = function(object){
	if(length(object@moments)>0){
		return(object@moments$forecastCov)
	} else{
		stop("\nrmgarch-->error: moments slot not populated with data.")
	}
}
setMethod("rcov", signature(object = "fMoments"), .rcov.fmoments)

.rcoskew.fmoments = function(object){
	if(length(object@moments)>0){
		if(!is.null(object@moments$forecastM3)){
			return(object@moments$forecastM3)
		} else{
			stop("\nrmgarch-->error: model does not return a coskewness matrix.")
		}
	} else{
		stop("\nrmgarch-->error: moments slot not populated with data.")
	}
}
setMethod("rcoskew", signature(object = "fMoments"), .rcoskew.fmoments)

.rcokurt.fmoments = function(object){
	if(length(object@moments)>0){
		if(!is.null(object@moments$forecastM4)){
			return(object@moments$forecastM4)
		} else{
			stop("\nrmgarch-->error: model does not return a cokurtosis matrix.")
		}
	} else{
		stop("\nrmgarch-->error: moments slot not populated with data.")
	}
}
setMethod("rcokurt", signature(object = "fMoments"), .rcokurt.fmoments)
mcremene/changedRmgarch2 documentation built on Feb. 5, 2021, 12:46 a.m.