inst/rmgarch.tests/rmgarch.test5.R

#################################################################################
##
##   R package rmgarch by Alexios Ghalanos Copyright (C) 2008-2013.
##   This file is part of the R package rmgarch.
##
##   The R package rmgarch is free software: you can redistribute it and/or modify
##   it under the terms of the GNU General Public License as published by
##   the Free Software Foundation, either version 3 of the License, or
##   (at your option) any later version.
##
##   The R package rmgarch is distributed in the hope that it will be useful,
##   but WITHOUT ANY WARRANTY; without even the implied warranty of
##   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##   GNU General Public License for more details.
##
#################################################################################

# FDCC Model

rmgarch.test5a = function(cluster = NULL)
{
	# DCC under different specifications
	tic = Sys.time()
	data(dji30retw)
	Dat = dji30retw[, 1:3, drop = FALSE]
	uspec = ugarchspec(mean.model = list(armaOrder = c(2,1)), variance.model = list(garchOrder = c(3,1), model = "sGARCH"), 
			distribution.model = "norm")
	spec1  = dccspec(uspec = multispec( replicate(3, uspec) ), dccOrder = c(1,1), 
			model = "DCC", distribution = "mvnorm")
	fspec1 = dccspec(uspec = multispec( replicate(3, uspec) ), dccOrder = c(1,1), 
			model = "FDCC", groups = c(1,2,3), distribution = "mvnorm")
	
	fit1 = dccfit(spec1, data = Dat, fit.control = list(eval.se=FALSE), solver.control=list(trace=1))
	ffit1 = dccfit(fspec1, data = Dat, fit.control = list(eval.se=FALSE), solver.control=list(trace=1))
	
	specx1 = ugarchspec(mean.model = list(armaOrder = c(2,1)), variance.model = list(garchOrder = c(3,1), model = "sGARCH"), 
			distribution.model = "norm")
	specx2 = ugarchspec(mean.model = list(armaOrder = c(0,1)), variance.model = list(garchOrder = c(1,1), model = "eGARCH"), 
			distribution.model = "norm")
	specx3 = ugarchspec(mean.model = list(armaOrder = c(0,0)), variance.model = list(garchOrder = c(1,1), model = "apARCH"), 
			distribution.model = "norm")
	spec2 = dccspec(uspec = multispec( list(specx1, specx2, specx3) ), dccOrder = c(1,1), distribution = "mvnorm")
	fspec2 = dccspec(uspec = multispec( list(specx1, specx2, specx3) ), dccOrder = c(1,1), 
			model = "FDCC", groups = c(1,2,3), distribution = "mvnorm")
	
	fit2 = dccfit(spec2, data = Dat, fit.control = list(eval.se=FALSE))
	ffit2 = dccfit(fspec2, data = Dat, fit.control = list(eval.se=FALSE))
	
	uspec = ugarchspec(mean.model = list(armaOrder = c(0,0),  include.mean = FALSE), 
			variance.model = list(garchOrder = c(1,1), model = "sGARCH"), 
			distribution.model = "norm")
	spec3 = dccspec(uspec = multispec( replicate(3, uspec) ), VAR = TRUE, 
			dccOrder = c(1,1), distribution = "mvnorm")
	fspec3 = dccspec(uspec = multispec( replicate(3, uspec) ), VAR = TRUE, 
			dccOrder = c(1,1), model = "FDCC", groups = c(1,2,3), 
			distribution = "mvnorm")
	
	fit3 = dccfit(spec3, data = Dat, fit.control = list(eval.se=FALSE))
	ffit3 = dccfit(fspec3, data = Dat, fit.control = list(eval.se=FALSE))
	
	uspec = ugarchspec(mean.model = list(armaOrder = c(0,0),  include.mean = FALSE), 
			variance.model = list(garchOrder = c(1,1), model = "sGARCH"), 
			distribution.model = "norm")
	spec4 = dccspec(uspec = multispec( replicate(3, uspec) ), VAR = TRUE, 
			lag = 3, dccOrder = c(1,1), distribution = "mvnorm")
	fspec4 = dccspec(uspec = multispec( replicate(3, uspec) ), VAR = TRUE, 
			lag = 3, dccOrder = c(1,1), model = "FDCC", groups = c(1,2,3), 
			distribution = "mvnorm")
	fit4 = dccfit(spec4, data = Dat, fit.control = list(eval.se=FALSE))
	ffit4 = dccfit(fspec4, data = Dat, fit.control = list(eval.se=FALSE))	
	
	np = c(
			length(fit1@mfit$matcoef[,1]),
			length(ffit1@mfit$matcoef[,1]),
			length(fit2@mfit$matcoef[,1]),
			length(ffit2@mfit$matcoef[,1]),
			length(fit3@mfit$matcoef[,1]),
			length(ffit3@mfit$matcoef[,1]),
			length(fit4@mfit$matcoef[,1]),
			length(ffit4@mfit$matcoef[,1])) +  (3^2 - 3)/2
	# (3^2-2)/2 is the calculated unconditional matrix
	aicmod = c(
			rugarch:::.information.test(fit1@mfit$llh,  nObs = fit1@model$modeldata$T, 
					nPars = np[1])[[1]],
			rugarch:::.information.test(ffit1@mfit$llh, nObs = ffit1@model$modeldata$T, 
					nPars = np[2])[[1]],
			rugarch:::.information.test(fit2@mfit$llh,  nObs = fit2@model$modeldata$T, 
					nPars = np[3])[[1]],
			rugarch:::.information.test(ffit2@mfit$llh, nObs = ffit2@model$modeldata$T, 
					nPars = np[4])[[1]],
			rugarch:::.information.test(fit3@mfit$llh,  nObs = fit3@model$modeldata$T, 
					nPars = np[5])[[1]],
			rugarch:::.information.test(ffit3@mfit$llh, nObs = ffit3@model$modeldata$T, 
					nPars = np[6])[[1]],
			rugarch:::.information.test(fit4@mfit$llh,  nObs = fit4@model$modeldata$T, 
					nPars = np[7])[[1]],
			rugarch:::.information.test(ffit4@mfit$llh, nObs = ffit4@model$modeldata$T, 
					nPars = np[8])[[1]])
	tmp = data.frame(n.pars = np, AIC = aicmod)
	rownames(tmp) = paste("Model_", 1:8, sep = "")
	
	options(width = 120)
	zz <- file("test5a.txt", open="wt")
	sink(zz)	
	print(tmp)
	sink(type="message")
	sink()
	close(zz)
	
	rc1 = rcor(fit1)
	frc1 = rcor(ffit1)
	rc2 = rcor(fit2)
	frc2 = rcor(ffit2)
	rc3 = rcor(fit3)
	frc3 = rcor(ffit3)
	rc4 = rcor(fit4)
	frc4 = rcor(ffit4)
	
	postscript("test5a.eps", width = 10, height = 8)
	par(mfrow=c(2,2))
	plot(rc1[1,2, ], type = "l")
	lines(frc1[1,2, ], col = 2)
	legend("topleft", legend = c("DCC", "FDCC"), col= 1:2, fill = 1:2)
	plot(rc2[2,3, ], type = "l")
	lines(frc2[2,3, ], col = 2)
	legend("topleft", legend = c("DCC", "FDCC"), col= 1:2, fill = 1:2)
	plot(rc3[1,3, ], type = "l")
	lines(frc2[1,3, ], col = 2)
	legend("topleft", legend = c("DCC", "FDCC"), col= 1:2, fill = 1:2)
	plot(rc4[1,2, ], type = "l")
	lines(frc4[1,2, ], col = 2)
	legend("topleft", legend = c("DCC", "FDCC"), col= 1:2, fill = 1:2)
	dev.off()
	toc = Sys.time()-tic
	cat("Elapsed:", toc, "\n")
	return(toc)
}



# Filter Tests
rmgarch.test5b = function(cluster = NULL)
{
	tic = Sys.time()
	
	data(dji30retw)
	Dat = dji30retw[, 1:3, drop = FALSE]
	uspec = ugarchspec(mean.model = list(armaOrder = c(1,2)), 
			variance.model = list(garchOrder = c(1,1), model = "eGARCH"), 
			distribution.model = "norm")
	spec1 = dccspec(uspec = multispec( replicate(3, uspec) ),  
			dccOrder = c(1,1),  model = "FDCC", groups = c(1,2,2), 
			distribution = "mvnorm")
	fit1 = dccfit(spec1, data = Dat, fit.control = list(eval.se=TRUE))
	
	vspec = vector(mode = "list", length = 3)
	midx = fit1@model$midx
	mpars = fit1@model$mpars
	for(i in 1:3){
		vspec[[i]] = uspec
		setfixed(vspec[[i]])<-as.list(mpars[midx[,i]==1, i])
	}
	dccfix = as.list(coef(fit1, type="dcc"))
	spec2 = dccspec(uspec = multispec( vspec ),  
			dccOrder = c(1,1),  model = "FDCC", groups =c(1,2,2), 
			distribution = "mvnorm", fixed.pars = dccfix)
	filt1 = dccfilter(spec2, data = Dat)
	
	rc1 = rcor(fit1)
	rc2 = rcor(filt1)
	
	options(width = 120)
	zz <- file("test5b1.txt", open="wt")
	sink(zz)
	print( all.equal(first(rc1)[,,1], first(rc2)[,,1] ) )
	print( all.equal(last(rc1)[,,1], last(rc2)[,,1] ) )
	print( all.equal(first(rc1, 10), first(rc2, 10) ) )
	print( all.equal(head(fitted(fit1)), head(fitted(filt1))) ) 
	print( all.equal(head(residuals(fit1)), head(residuals(filt1)) )) 
	sink(type="message")
	sink()
	close(zz)
	
	
	# Filtering new data and keeping old spec
	# VAR and non VAR specification
	# 2 stage estimation should usually always use Normal for 1-stage (see below for student)
	uspec = ugarchspec(mean.model = list(armaOrder = c(1,1)), 
			variance.model = list(garchOrder = c(2,1), model = "eGARCH"), 
			distribution.model = "norm")
	spec1 = dccspec(uspec = multispec( replicate(3, uspec) ),  
			dccOrder = c(1,1),  model = "FDCC", groups = c(1,2,3), 
			distribution = "mvnorm")
	fit1 = dccfit(spec1, data = Dat, fit.control = list(eval.se=FALSE), out.sample = 100)
	T = dim(Dat)[1]-100
	vspec = vector(mode = "list", length = 3)
	midx = fit1@model$midx
	mpars = fit1@model$mpars
	for(i in 1:3){
		vspec[[i]] = uspec
		setfixed(vspec[[i]])<-as.list(mpars[midx[,i]==1, i])
	}
	dccfix = as.list(coef(fit1, "dcc"))
	spec2 = dccspec(uspec = multispec( vspec ), dccOrder = c(1,1), model = "FDCC", 
			groups = c(1,2,3), distribution = "mvnorm", fixed.pars = dccfix)
	filt1 = dccfilter(spec2, data = Dat[1:(T+5), ], filter.control = list(n.old = T))
	
	
	rc1 = rcor(fit1)
	rc2 = rcor(filt1)
	options(width = 120)
	zz <- file("test5b2.txt", open="wt")
	sink(zz)
	print( all.equal(first(rc1)[,,1], first(rc2)[,,1]) )
	# T+5
	print( all.equal(last(rc1)[,,1], last(rc2, 6)[,,1]) )
	print( all.equal(first(rc1, 10), first(rc2, 10)) )
	print( all.equal(head(fitted(fit1)), head(fitted(filt1))) ) 
	print( all.equal(head(residuals(fit1)), head(residuals(filt1))) ) 
	sink(type="message")
	sink()
	close(zz)
	
	
	##########################################
	# with VAR
	uspec = ugarchspec(mean.model = list(armaOrder = c(0,0), include.mean = FALSE), 
			variance.model = list(garchOrder = c(1,1), model = "eGARCH"), 
			distribution.model = "norm")
	spec1 = dccspec(uspec = multispec( replicate(3, uspec) ),  
			dccOrder = c(1,1),  model = "FDCC", groups = c(1,1,1), 
			VAR = TRUE, lag = 2, distribution = "mvnorm")
	fit1 = dccfit(spec1, data = Dat, fit.control = list(eval.se=FALSE), out.sample = 100)
	
	T = dim(Dat)[1]-100
	VAR.fit = varxfilter(Dat[1:(T+5), ], p = 2, Bcoef = fit1@model$varcoef, postpad = "constant")
	
	vspec = vector(mode = "list", length = 3)
	midx = fit1@model$midx
	mpars = fit1@model$mpars
	for(i in 1:3){
		vspec[[i]] = uspec
		setfixed(vspec[[i]])<-as.list(mpars[midx[,i]==1, i])
	}
	dccfix = as.list(coef(fit1, "dcc"))
	spec2 = dccspec(uspec = multispec( vspec ),  
			dccOrder = c(1,1),  model = "FDCC", groups = c(1,1,1), VAR = TRUE, 
			lag = 2, distribution = "mvnorm",fixed.pars = dccfix)
	filt1 = dccfilter(spec2, data = Dat[1:(T+5), ], filter.control = list(n.old = T), varcoef = VAR.fit$Bcoef)
	
	
	rc1 = rcor(fit1)
	rc2 = rcor(filt1)
	options(width = 120)
	zz <- file("test5b3.txt", open="wt")
	sink(zz)
	print( all.equal(first(rc1)[,,1], first(rc2)[,,1]) )
	# T+5
	print( all.equal(last(rc1)[,,1], last(rc2, 6)[,,1]) )
	print( all.equal(first(rc1, 10), first(rc2, 10)) )
	print( all.equal(head(fitted(fit1)), head(fitted(filt1))) ) 
	print( all.equal(head(residuals(fit1)), head(residuals(filt1))) ) 
	sink(type="message")
	sink()
	close(zz)
	
	toc = Sys.time()-tic
	cat("Elapsed:", toc, "\n")
	return(toc)
}


# Forecast Tests 
rmgarch.test5c = function(cluster = NULL)
{
	tic = Sys.time()
	
	data(dji30retw)
	Dat = dji30retw[, 1:3, drop = FALSE]
	
	#---------------------------------------------------------------------------------------------------------------
	# ARMA-GARCH-DCC
	cnames = colnames(Dat)
	uspec = ugarchspec(mean.model = list(armaOrder = c(2,1)), variance.model = list(garchOrder = c(1,1), model = "gjrGARCH"), 
			distribution.model = "norm")
	spec1 = dccspec(uspec = multispec( replicate(3, uspec) ), dccOrder = c(1,1), model="FDCC",
			groups = c(1,2,3), distribution = "mvnorm")
	fit1 = dccfit(spec1, data = Dat, out.sample = 100, fit.control = list(eval.se=FALSE))
	T = dim(Dat)[1]-100
	
	forc = dccforecast(fit1, n.ahead = 1, n.roll = 10)
	# REM: n.roll = 10 == 11 roll (1 roll is the standard + 10 beyond)
	# Now filter
	uspec = ugarchspec(mean.model = list(armaOrder = c(2,1)), 
			variance.model = list(garchOrder = c(1,1), model = "gjrGARCH"), 
			distribution.model = "norm")
	vspec = vector(mode = "list", length = 3)
	midx = fit1@model$midx
	mpars = fit1@model$mpars
	for(i in 1:3){
		vspec[[i]] = uspec
		setfixed(vspec[[i]])<-as.list(mpars[midx[,i]==1, i])
	}
	dccfix = as.list(coef(fit1, "dcc"))
	spec2 = dccspec(uspec = multispec( vspec ), dccOrder = c(1,1),  model="FDCC",
			groups = c(1,2,3), distribution = "mvnorm", fixed.pars = dccfix)
	
	# 1-step ahead forecast on out-sample data is equivalent to filtering
	# Note the use of n.old so that filtering assumptions are observed based on
	# the size of the original dataset
	filt1 = dccfilter(spec2, data = Dat[1:(T+100),], filter.control = list(n.old = T))
	
	# check mean and sigma
	options(width = 120)
	zz <- file("test5c1.txt", open="wt")
	sink(zz)
	# REM Forecast Headings are for T+0 (i.e. the time the forecast was made) and NOT
    # the forecast date (T+i)
	print(all.equal(fitted(forc)[,,1], filt1@model$mu[T+1,], fitted(filt1)[T+1,], check.attributes=FALSE))
	print(all.equal(sigma(forc)[,,1], filt1@model$sigma[T+1,], sigma(filt1)[T+1,], check.attributes=FALSE))
	print(all.equal(fitted(forc)[,,11], filt1@model$mu[T+11,], fitted(filt1)[T+11,], check.attributes=FALSE))
	print(all.equal(rcor(forc)[[1]][,,1], rcor(filt1)[,,T+1], check.attributes=FALSE))
	print(all.equal(rcor(forc)[[11]][,,1], rcor(filt1)[,,T+11], check.attributes=FALSE))
	print(all.equal(sigma(forc)[,,11], filt1@model$sigma[T+11,], sigma(filt1)[T+11,], check.attributes=FALSE))
	sink(type="message")
	sink()
	close(zz)
	
	
	###########################################################################
	# DCC Filter vs rolling Forecast
	# The reason for the build up of the difference between the filter and rolling
	# forecast methods is that the filter uses a fixed estimate of the covariance
	# matrix initialization at time T (e.g. n.old), whilst the rolling forecast method
	# updates the initialization value at each iteration (T+1) to include the data upto 
	# point T.
	# plot(rcor(filt1)[1,2,(T+1):(T+500)], type = "l")
	# lines(sapply(rcor(forc), FUN = function(x) x[1,2,1]), col = 2)
	
	
	#---------------------------------------------------------------------------------------------------------------
	# VAR-GARCH-DCC
	uspec = ugarchspec(mean.model = list(armaOrder = c(0,0), include.mean = FALSE), 
			variance.model = list(garchOrder = c(1,1), model = "sGARCH"), 
			distribution.model = "norm")
	spec1 = dccspec(uspec = multispec( replicate(3, uspec) ), VAR = TRUE, lag = 2, 
			dccOrder = c(1,1), model="FDCC", groups = c(1,1,2), distribution = "mvnorm")
	fit1 = dccfit(spec1, data = Dat, out.sample = 100, fit.control = list(eval.se=FALSE))
	T = dim(Dat)[1]-100
	
	forc = dccforecast(fit1, n.ahead = 1, n.roll = 10)
	# REM: n.roll = 10 == 11 roll (1 roll is the standard + 10 beyond)
	# Now filter (first the VAR so it is the same as in fit)
	VAR.filt = varxfilter(Dat[1:(T+100),], p = 2, Bcoef = fit1@model$varcoef, postpad = "constant")
	uspec = ugarchspec(mean.model = list(armaOrder = c(0,0), include.mean = FALSE), 
			variance.model = list(garchOrder = c(1,1), model = "sGARCH"), 
			distribution.model = "norm")
	vspec = vector(mode = "list", length = 3)
	midx = fit1@model$midx
	mpars = fit1@model$mpars
	for(i in 1:3){
		vspec[[i]] = uspec
		setfixed(vspec[[i]])<-as.list(mpars[midx[,i]==1, i])
	}
	dccfix = as.list(coef(fit1, "dcc"))
	spec2 = dccspec(uspec = multispec( vspec ), VAR = TRUE, lag = 2, 
			dccOrder = c(1,1),  model="FDCC", groups = c(1,1,2), 
			distribution = "mvnorm", fixed.pars = dccfix)
	
	filt1 = dccfilter(spec2, data = Dat[1:(T+100),], filter.control = list(n.old = T), varcoef = VAR.filt$Bcoef)
	
	# check mean and sigma
	options(width = 120)
	zz <- file("test5c2.txt", open="wt")
	sink(zz)
	print(all.equal(fitted(forc)[,,1], as.numeric(filt1@model$mu[T+1,]), check.attributes=FALSE))
	print(all.equal(fitted(forc)[,,1], as.numeric(fitted(filt1)[T+1,]), check.attributes=FALSE))
	
	print(all.equal(sigma(forc)[,,1], filt1@model$sigma[T+1,], check.attributes=FALSE))
	print(all.equal(sigma(forc)[,,1], as.numeric(sigma(filt1)[T+1,]), check.attributes=FALSE))
	print(all.equal(fitted(forc)[,,11], as.numeric(filt1@model$mu[T+11,]), check.attributes=FALSE))
	print(all.equal(fitted(forc)[,,11], as.numeric(fitted(filt1)[T+11,]), check.attributes=FALSE))
	print(all.equal(sigma(forc)[,,11], filt1@model$sigma[T+11,], check.attributes=FALSE))
	print(all.equal(sigma(forc)[,,11], as.numeric(sigma(filt1)[T+11,]), check.attributes=FALSE))
	print(all.equal(rcor(forc)[[1]][,,1], rcor(filt1)[,,T+1], check.attributes=FALSE))
	# the difference is explained in the note above
	print(all.equal(rcor(forc)[[11]][,,1], rcor(filt1)[,,T+11], check.attributes=FALSE))
	sink(type="message")
	sink()
	close(zz)
	
	data(dji30ret)
	Dat = dji30ret[,1:10]
	uspec = ugarchspec(mean.model = list(armaOrder = c(0,0), include.mean = FALSE), 
			variance.model = list(garchOrder = c(1,1), model = "sGARCH"), 
			distribution.model = "norm")
	spec1 = dccspec(uspec = multispec( replicate(10, uspec) ), VAR = TRUE, lag = 1, 
			dccOrder = c(1,1),  model="FDCC", groups = c(1,1,1,2,2,2,3,3,4,4), 
			distribution = "mvnorm")
	fit1 = dccfit(spec1, data = Dat, out.sample = 100, solver = "solnp", 
			fit.control = list(eval.se=FALSE))	
		
	forc1 = dccforecast(fit1, n.ahead = 1500, n.roll = 0)	
	forc2 = dccforecast(fit1, n.ahead = 1, n.roll = 99)
	

	# forecast R --> unconditional R (Rbar) as N --> large
	tmp = rmgarch:::getfdccpars(fit1@model$ipars, fit1@model)
	A = tmp$A %*% t(tmp$A)
	B = tmp$B %*% t(tmp$B)
	C = matrix(1, NROW(B), NCOL(B)) - A - B
	
	Qbar = fit1@mfit$Qbar
	Rbar = cov2cor( C * Qbar )
	
	options(width = 120)
	zz <- file("test5c4.txt", open="wt")
	sink(zz)
	all.equal(Rbar, forc1@mforecast$R[[1]][,,1500])
	print(Rbar - forc1@mforecast$R[[1]][,,1500])
	sink(type="message")
	sink()
	close(zz)
	
	postscript("test5c4.eps", width = 10, height = 8)
	par(mfrow = c(3,3))
	plot(forc1@mforecast$R[[1]][1,2,], type = "l")
	abline(h = Rbar[1,2], col = 2)
	plot(forc1@mforecast$R[[1]][6,8,], type = "l")
	abline(h = Rbar[6,8], col = 2)
	plot(forc1@mforecast$R[[1]][4,5,], type = "l")
	abline(h = Rbar[4,5], col = 2)
	plot(forc1@mforecast$R[[1]][9,10,], type = "l")
	abline(h = Rbar[9,10], col = 2)		
	plot(forc1@mforecast$R[[1]][2,3,], type = "l")
	abline(h = Rbar[2,3], col = 2)
	plot(forc1@mforecast$R[[1]][1,8,], type = "l")
	abline(h = Rbar[1,8], col = 2)
	plot(forc1@mforecast$R[[1]][4,5,], type = "l")
	abline(h = Rbar[4,5], col = 2)
	plot(forc1@mforecast$R[[1]][6,7,], type = "l")
	abline(h = Rbar[6,7], col = 2)
	dev.off()
	#############################################

	
	toc = Sys.time()-tic
	cat("Elapsed:", toc, "\n")
	return(toc)
}


# simulation tests
rmgarch.test5d = function(cluster = NULL)
{
	tic = Sys.time()
	data(dji30ret)
	# Normal
	Dat = dji30ret[, 1:5, drop = FALSE]
	uspec1 = ugarchspec(mean.model = list(armaOrder = c(1,0)), variance.model = list(model = "sGARCH"), 
			distribution.model = "norm")
	uspec2 = ugarchspec(mean.model = list(armaOrder = c(1,0)), variance.model = list(model = "sGARCH"), 
			distribution.model = "norm")
	uspec3 = ugarchspec(mean.model = list(armaOrder = c(0,0)), variance.model = list(model = "sGARCH"), 
			distribution.model = "norm")
	uspec4 = ugarchspec(mean.model = list(armaOrder = c(1,0)), variance.model = list(model = "sGARCH",
					garchOrder = c(1, 1)), 
			distribution.model = "norm")
	uspec5 = ugarchspec(mean.model = list(armaOrder = c(1,1)), variance.model = list(model = "sGARCH",
					garchOrder = c(1, 1)), 
			distribution.model = "norm")
	
	uspec = c( uspec1, uspec2, uspec3, uspec4, uspec5 )
	spec1 = dccspec(uspec = multispec( uspec ), dccOrder = c(1,1), model = "FDCC", 
			groups = c(1,2,3,4,5), distribution = "mvnorm")
	
	fit1 = dccfit(spec1, data = Dat, solver = "solnp", fit.control = list(eval.se=FALSE), cluster = cluster)
	
	spec2 = dccspec(uspec = multispec( uspec ), dccOrder = c(1,1), distribution = "mvnorm")
	fit2 = dccfit(spec2, data = Dat, solver = "solnp", fit.control = list(eval.se=FALSE), cluster = cluster)
	
	forc = dccforecast(fit1, n.ahead = 1)
	
	sim1 = dccsim(fit1, n.sim = 1, m.sim = 1000, startMethod = "sample", cluster = cluster, rseed = 1:1000)
	
	
	# gauge the uncertainty around 1-ahead
	forcM = fitted(forc)[,,1]
	sim1M = t(sapply(sim1@msim$simX, FUN = function(x) x))
	# equivalent: t(sapply(1:1000, FUN = function(i) fitted(sim1, sim=i)))	
	cnames = fit1@model$modeldata$asset.names
	mvnH = apply(sim1M, 2, FUN = function(x) hist(x, breaks="fd", plot=FALSE))
	minX = maxX = rep(0, 5)
	maxY = rep(0, 5)
	for(i in 1:5){
		maxX[i] = max(c(mvnH[[i]]$breaks))
		minX[i] = min(c(mvnH[[i]]$breaks))
		maxY[i] = max(c(mvnH[[i]]$counts))
	}
	
	postscript("test5d1.eps", width = 16, height = 14)
	par(mfrow = c(2,3))
	for(i in 1:5){
		plot(mvnH[[i]], xlim = c(minX[i], maxX[i]), ylim = c(0, maxY[i]), border = "steelblue", xlab = "", main = cnames[i])
		abline(v = forcM[i], col = "black", lwd=1)
		legend("topleft", c("MVN"), col = c("steelblue"), bty="n", lty=c(1,1))
		legend("topright", c("Forecast"), col = c("black"), bty="n", lty=1)
	}
	dev.off()
	
	sim1 = dccsim(fit1, n.sim = 2500, m.sim = 1, startMethod = "sample", cluster = cluster, rseed = 10)
	sim2 = dccsim(fit2, n.sim = 2500, m.sim = 1, startMethod = "sample", cluster = cluster, rseed = 10)
	
	
	R1 = rcor(sim1)
	R2 = rcor(sim2)
	postscript("test5d2.eps", width = 16, height = 14)
	par(mfrow = c(2,3))
	Rx1 = apply(R1, 3, function(x) x[1,2])
	Rx2 = apply(R2, 3, function(x) x[1,2])
	maxy = max(c(Rx1, Rx2))
	miny = min(c(Rx1, Rx2))
	plot( Rx1, main = paste(cnames[1],"-",cnames[2],sep=""), type="l", col = "steelblue", ylim=c(miny, maxy), ylab="Corr",
			xlab = "T[Sim]")
	lines(Rx2, main = paste(cnames[1],"-",cnames[2],sep=""), col = "tomato1")
	legend("topleft", c("FDCC", "DCC"), col = c("steelblue", "tomato1"), lty=c(1,1), bty="n")
	
	Rx1 = apply(R1, 3, function(x) x[1,3])
	Rx2 = apply(R2, 3, function(x) x[1,3])
	maxy = max(c(Rx1, Rx2))
	miny = min(c(Rx1, Rx2))
	plot( Rx1, main = paste(cnames[1],"-",cnames[3],sep=""), type="l", col = "steelblue", ylim=c(miny, maxy), ylab="Corr",
			xlab = "T[Sim]")
	lines(Rx2, main = paste(cnames[1],"-",cnames[3],sep=""), col = "tomato1")
	legend("topleft", c("FDCC", "DCC"), col = c("steelblue", "tomato1"), lty=c(1,1), bty="n")
	
	Rx1 = apply(R1, 3, function(x) x[2,4])
	Rx2 = apply(R2, 3, function(x) x[2,4])
	maxy = max(c(Rx1, Rx2))
	miny = min(c(Rx1, Rx2))
	plot( Rx1, main = paste(cnames[2],"-",cnames[4],sep=""), type="l", col = "steelblue", ylim=c(miny, maxy), ylab="Corr",
			xlab = "T[Sim]")
	lines(Rx2, main = paste(cnames[2],"-",cnames[4],sep=""), col = "tomato1")
	legend("topleft", c("FDCC", "DCC"), col = c("steelblue", "tomato1"), lty=c(1,1), bty="n")
	
	Rx1 = apply(R1, 3, function(x) x[3,4])
	Rx2 = apply(R2, 3, function(x) x[3,4])
	maxy = max(c(Rx1, Rx2))
	miny = min(c(Rx1, Rx2))
	plot( Rx1, main = paste(cnames[3],"-",cnames[4],sep=""), type="l", col = "steelblue", ylim=c(miny, maxy), ylab="Corr",
			xlab = "T[Sim]")
	lines(Rx2, main = paste(cnames[3],"-",cnames[4],sep=""), col = "tomato1")
	legend("topleft", c("FDCC", "DCC"), col = c("steelblue", "tomato1"), lty=c(1,1), bty="n")
	
	Rx1 = apply(R1, 3, function(x) x[4,5])
	Rx2 = apply(R2, 3, function(x) x[4,5])
	maxy = max(c(Rx1, Rx2))
	miny = min(c(Rx1, Rx2))
	plot( Rx1, main = paste(cnames[4],"-",cnames[5],sep=""), type="l", col = "steelblue", ylim=c(miny, maxy), ylab="Corr",
			xlab = "T[Sim]")
	lines(Rx2, main = paste(cnames[4],"-",cnames[5],sep=""), col = "tomato1")
	legend("topleft", c("FDCC", "DCC"), col = c("steelblue", "tomato1"), lty=c(1,1), bty="n")
	
	Rx1 = apply(R1, 3, function(x) x[1,5])
	Rx2 = apply(R2, 3, function(x) x[1,5])
	maxy = max(c(Rx1, Rx2))
	miny = min(c(Rx1, Rx2))
	plot( Rx1, main = paste(cnames[1],"-",cnames[5],sep=""), type="l", col = "steelblue", ylim=c(miny, maxy), ylab="Corr",
			xlab = "T[Sim]")
	lines(Rx2, main = paste(cnames[1],"-",cnames[5],sep=""), col = "tomato1")
	legend("topleft", c("FDCC", "DCC"), col = c("steelblue", "tomato1"), lty=c(1,1), bty="n")
	dev.off()
}
mcremene/changedRmgarch2 documentation built on Feb. 5, 2021, 12:46 a.m.