test_panel | R Documentation |
Performs a test of Complete Spatial Randomness for each
plate. This function is a wrapper around quadrat.test
function working directly on the objects of adpcr
.
test_panel( X, nx = 5, ny = 5, alternative = c("two.sided", "regular", "clustered"), method = c("Chisq", "MonteCarlo"), conditional = TRUE, nsim = 1999 )
X |
Object of the |
nx |
Number of quadrats in the x direction. |
ny |
Number of quadrats in the y direction. |
alternative |
|
method |
|
conditional |
|
nsim |
The number of simulated samples to generate when method="MonteCarlo". |
Under optimal conditions, the point pattern of dPCR events (e.g., positive droplet & negative droplets) should be randomly distrubuted over a planar chip. This function verifies this assumption using chi-square or Monte Carlo test. Arrays with non-random patterns should be checked for integrity.
A list
of objects of class "htest"
with the length equal to the
number of plates (minimum 1).
A similar result can be achived by using adpcr2ppp
and
quadrat.test
. See Examples.
Adrian Baddeley, Rolf Turner, Michal Burdukiewcz, Stefan Roediger.
http://www.spatstat.org/
quadrat.test
.
many_panels <- sim_adpcr( m = 400, n = 765, times = 1000, pos_sums = FALSE, n_panels = 5 ) test_panel(many_panels) # test only one plate test_panel(extract_run(many_panels, 3)) # do test_panel manually require(spatstat.core) require(spatstat.geom) ppp_data <- adpcr2ppp(many_panels) lapply(ppp_data, function(single_panel) quadrat.test(single_panel))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.