knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width=7, fig.height=7 )
First, load the rbims package.
library(rbims)
The second thing to do would be to read the metadata file and the KofamKOALA/KofamScan output. The metadata file is a tab-separated file containing the name of your bins and any extra information you would like to use for visualization.
The metadata file contains external information of each bin, like sample site or taxonomy. The name of the bins in the first column is mandatory.
The metadata table can be read in various formats (csv, tsv, txt, xlsx); you will need to use the corresponding function to read the type of file you have. In this case, the example table of rbims is in excel format; therefore, to read the metadata, we will use the function read_excel
from the package readxl
. You can download the metadata example file metadata and try.
library(readxl) metadata<-read_excel("metadata.xlsx")
head(metadata)
If you followed the create KEGG profile tutorial, you could go directly to a case example of exploring and specific pathway.
read_ko can read multiple text files obtained from KofamKOALA/KofamScan or KAAS, as long as they are all in the same path in your working directory. If you use both, and there are different hits for a KO in both searches, it will take the hit from KofamKOALA/KofamScan.
ko_bin_table<-read_ko(data_kofam ="C:/Users/bins")
Then map the KO to the rest of the features of the KEGG and rbims database.
ko_bin_mapp<-mapping_ko(ko_bin_table)
To explore the metabolism table, rbims has three functions to subset the table:
Let’s say that you are interested in the genes associated with the biofilm formation in Vibrio Cholerae.
Biofilm_Vibrio<-c("map05111")
library(tidyr) Biofilm_Vibrio_subset<-ko_bin_mapp%>% drop_na(Pathway) %>% get_subset_pathway(Pathway, Biofilm_Vibrio)
head(Biofilm_Vibrio_subset)
plot_bubble(tibble_ko = Biofilm_Vibrio_subset, x_axis = Bin_name, y_axis = KO, analysis="KEGG", data_experiment = metadata, calc="Binary", color_character = Order, range_size = c(1,10))
Let’s say that you want to order by bin names.
order_taxa<-c("Bin_1", "Bin_2", "Bin_10", "Bin_113", "Bin_12", "Bin_56")
plot_bubble(tibble_ko = Biofilm_Vibrio_subset, data_experiment = metadata, x_axis = Bin_name, y_axis = Genes, analysis="KEGG", calc="Binary", order_bins=order_taxa, color_character=Genus, range_size = c(5,6))
Here, I will extract the information of some KO related to Carbon fixation metabolism.
Carbon_fixation<-c("K01007", "K00626", "K01902", "K01595", "K01903", "K00170", "K00169", "K00171", "K00172", "K00241")
library(tidyr) Carbon_fixation_subset<-ko_bin_mapp%>% drop_na(KO) %>% get_subset_pathway(KO, Carbon_fixation)
head(Carbon_fixation_subset)
We can visualize the data with a heatmap.
plot_heatmap(tibble_ko=Carbon_fixation_subset, y_axis=Genes, analysis = "KEGG", calc="Binary")
In this example, we will use energy metabolism to explore the rest of the functions.
Other_energy<-c("Fermentation", "Carbon fixation", "Methane metabolism", "Sulfur metabolism", "Nitrogen metabolism")
library(tidyr) Energy_metabolisms<-ko_bin_mapp %>% drop_na(Cycle) %>% get_subset_pathway(Cycle, Other_energy)
head(Energy_metabolisms)
plot_heatmap(tibble_ko=Energy_metabolisms, y_axis=Pathway_cycle, order_y = Cycle, analysis = "KEGG", calc="Percentage")
plot_heatmap(tibble_ko=Energy_metabolisms, y_axis=Pathway_cycle, data_experiment=metadata, order_x = Sample_site, analysis = "KEGG", calc="Percentage")
plot_heatmap(tibble_ko=Energy_metabolisms, y_axis=Pathway_cycle, order_y = Cycle, split_y = TRUE, analysis = "KEGG", calc="Percentage")
plot_heatmap(tibble_ko=Energy_metabolisms, data_experiment = metadata, y_axis=Pathway_cycle, order_y = Cycle, order_x = Clades, split_y = TRUE, analysis = "KEGG", calc="Percentage")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.