# ========================================================================================================
# tune.splsda: chose the optimal number of parameters per component on a splsda method
# ========================================================================================================
#' Tuning function for block.splsda method (N-integration with sparse
#' Discriminant Analysis)
#'
#' Computes M-fold or Leave-One-Out Cross-Validation scores based on a
#' user-input grid to determine the optimal parsity parameters values for
#' method \code{block.splsda}.
#'
#' This tuning function should be used to tune the keepX parameters in the
#' \code{block.splsda} function (N-integration with sparse Discriminant
#' Analysis).
#'
#' M-fold or LOO cross-validation is performed with stratified subsampling
#' where all classes are represented in each fold.
#'
#' If \code{validation = "Mfold"}, M-fold cross-validation is performed. The
#' number of folds to generate is to be specified in the argument \code{folds}.
#'
#' If \code{validation = "loo"}, leave-one-out cross-validation is performed.
#' By default \code{folds} is set to the number of unique individuals.
#'
#' All combination of test.keepX values are tested. A message informs how many
#' will be fitted on each component for a given test.keepX.
#'
#' More details about the prediction distances in \code{?predict} and the
#' supplemental material of the mixOmics article (Rohart et al. 2017). Details
#' about the PLS modes are in \code{?pls}.
#'
#' BER is appropriate in case of an unbalanced number of samples per class as
#' it calculates the average proportion of wrongly classified samples in each
#' class, weighted by the number of samples in each class. BER is less biased
#' towards majority classes during the performance assessment.
#'
#' @inheritParams block.splsda
#' @inheritParams tune
#' @inheritParams tune.spca
#' @param test.keepX A named list with the same length and names as X
#' (without the outcome Y, if it is provided in X and designated using
#' \code{indY}). Each entry of this list is a numeric vector for the different
#' keepX values to test for that specific block.
#' @param already.tested.X Optional, if \code{ncomp > 1} A named list of
#' numeric vectors each of length \code{n_tested} indicating the number of
#' variables to select from the \eqn{X} data set on the first \code{n_tested}
#' components.
#' @param weighted tune using either the performance of the Majority vote or
#' the Weighted vote.
#' @param scheme Either "horst", "factorial" or "centroid". Default =
#' \code{centroid}, see reference.
#' @param signif.threshold numeric between 0 and 1 indicating the significance
#' threshold required for improvement in error rate of the components. Default
#' to 0.01.
#' @param ... Optional arguments:
#' \itemize{
#' \item \bold{seed} Integer. Seed number for reproducible parallel code.
#' Default is \code{NULL}.
#' }
#' run in parallel when repeating the cross-validation, which is usually the
#' most computationally intensive process. If there is excess CPU, the
#' cross-vaidation is also parallelised on *nix-based OS which support
#' \code{mclapply}.
#' @return A list that contains: \item{error.rate}{returns the prediction error
#' for each \code{test.keepX} on each component, averaged across all repeats
#' and subsampling folds. Standard deviation is also output. All error rates
#' are also available as a list.} \item{choice.keepX}{returns the number of
#' variables selected (optimal keepX) on each component, for each block.}
#' \item{choice.ncomp}{returns the optimal number of components for the model
#' fitted with \code{$choice.keepX}. } \item{error.rate.class}{returns the
#' error rate for each level of \code{Y} and for each component computed with
#' the optimal keepX}
#'
#' \item{predict}{Prediction values for each sample, each \code{test.keepX},
#' each comp and each repeat. Only if light.output=FALSE}
#' \item{class}{Predicted class for each sample, each \code{test.keepX}, each
#' comp and each repeat. Only if light.output=FALSE}
#'
#' \item{cor.value}{compute the correlation between latent variables for
#' two-factor sPLS-DA analysis.}
#' @author Florian Rohart, Amrit Singh, Kim-Anh Lê Cao, AL J Abadi
#' @seealso \code{\link{block.splsda}} and http://www.mixOmics.org for more
#' details.
#' @references Method:
#'
#' Singh A., Gautier B., Shannon C., Vacher M., Rohart F., Tebbutt S. and Lê
#' Cao K.A. (2016). DIABLO: multi omics integration for biomarker discovery.
#'
#' mixOmics article:
#'
#' Rohart F, Gautier B, Singh A, Lê Cao K-A. mixOmics: an R package for 'omics
#' feature selection and multiple data integration. PLoS Comput Biol 13(11):
#' e1005752
#' @keywords regression multivariate
#' @export
#' @example ./examples/tune.block.splsda-examples.R
tune.block.splsda <-
function (X,
Y,
indY,
ncomp = 2,
test.keepX,
already.tested.X,
validation = "Mfold",
folds = 10,
dist = "max.dist",
measure = "BER",
# one of c("overall","BER")
weighted = TRUE,
# optimise the weighted or not-weighted prediction
progressBar = FALSE,
tol = 1e-06,
max.iter = 100,
near.zero.var = FALSE,
nrepeat = 1,
design,
scheme = "horst",
scale = TRUE,
init = "svd",
light.output = TRUE,
# if FALSE, output the prediction and classification of each sample during each folds, on each comp, for each repeat
signif.threshold=0.01,
BPPARAM = SerialParam(),
seed = NULL,
...)
{
if (hasArg('cpus')) #defunct
{
stop("'cpus' has been replaced by BPPARAM. See documentation.")
}
BPPARAM$RNGseed <- seed
set.seed(seed)
## ----------- checks -----------
# check input 'Y' and transformation in a dummy matrix
if (!missing(Y))
{
if (is.null(dim(Y)))
{
Y = factor(Y)
} else {
stop("'Y' should be a factor or a class vector.")
}
if (nlevels(Y) == 1)
stop("'Y' should be a factor with more than one level")
} else if (!missing(indY)) {
Y = X[[indY]]
if (is.null(dim(Y)))
{
Y = factor(Y)
} else {
stop("'Y' should be a factor or a class vector.")
}
if (nlevels(Y) == 1)
stop("'X[[indY]]' should be a factor with more than one level")
X = X[-indY] #remove Y from X to pass the arguments simpler to block.splsda
} else if (missing(indY)) {
stop("Either 'Y' or 'indY' is needed")
}
## check using internal #TODO we need to unify the checks
Y.check <- unmap(Y)
Y.check <- matrix(Y.check, nrow = nrow(Y.check), dimnames = list(rownames(X[[1]]), NULL))
Check.entry.wrapper.mint.block(X = X, Y = Y.check, indY = indY,
ncomp = ncomp, DA=TRUE,
design = design, init = init, scheme = scheme, scale = scale,
near.zero.var = near.zero.var, mode = 'regression', tol = tol,
max.iter = max.iter)
## ensure all X blocks are matrices, keeping dimnames
X <- lapply(X, function(z){
zm <- z
if (!is.matrix(zm)) {
zm <- as.matrix(zm)
dimnames(zm) <- dimnames(z)
}
return(zm)
})
#-- dist
dist = match.arg(
dist,
choices = c("max.dist", "centroids.dist", "mahalanobis.dist"),
several.ok = TRUE
)
#-- progressBar
if (!is.logical(progressBar))
stop("'progressBar' must be a logical constant (TRUE or FALSE).",
call. = FALSE)
#-- ncomp
if (is.null(ncomp) || !is.numeric(ncomp) || ncomp <= 0)
stop("invalid number of variates, 'ncomp'.")
#-- validation
choices = c("Mfold", "loo")
validation = choices[pmatch(validation, choices)]
if (is.na(validation))
stop("'validation' must be either 'Mfold' or 'loo'")
if (validation == 'loo')
{
if (nrepeat != 1)
message("Leave-One-Out validation does not need to be repeated: 'nrepeat' is set to '1'.")
nrepeat = 1
}
#-- measure
measure.input = measure
if (!measure %in% c("overall", "BER"))
stop("'measure' must be 'overall' or 'BER'")
#-- check significance threshold
signif.threshold <- .check_alpha(signif.threshold)
#-- already.tested.X
if (missing(already.tested.X))
{
already.tested.X = NULL
} else {
if (is.null(already.tested.X))
stop("'already.tested.X' must be a vector of keepX values ")
# we require the same number of already tuned components on each block
if (length(unique(sapply(already.tested.X, length))) > 1)
stop(
"The same number of components must be already tuned for each block, in 'already.tested.X'"
)
if (any(sapply(already.tested.X, function(x)
is.list(x))) == TRUE)
stop(" Each entry of 'already.tested.X' must be a vector of keepX values")
if (length(already.tested.X[[1]]) >= ncomp)
stop(
"'ncomp' needs to be higher than the number of components already tuned, which is length(already.tested.X)=",
length(already.tested.X) ,
call. = FALSE
)
}
if (any(is.na(validation)) || length(validation) > 1)
stop("'validation' should be one of 'Mfold' or 'loo'.", call. = FALSE)
#-- test.keepX
if (missing(test.keepX))
{
test.keepX = lapply(X, function(x) {
max.test.keepX <- min(30, ncol(x))
if (max.test.keepX > 15)
return(seq(5, max.test.keepX, 5))
else
return(seq(1, max.test.keepX, 2))
})
} else {
if (length(test.keepX) != length(X))
stop(
paste(
"test.keepX should be a list of length ",
length(X),
", corresponding to the blocks: ",
paste(names(X), collapse = ", "),
sep = ""
)
)
#aa = sapply(test.keepX, length)
#if (any(is.null(aa) | aa == 1 | !is.numeric(aa)))
#stop("Each entry of 'test.keepX' must be a numeric vector with more than two values", call. = FALSE)
}
l = sapply(test.keepX, length)
n = names(test.keepX)
temp = data.frame(l, n)
message(
paste(
"\nYou have provided a sequence of keepX of length: ",
paste(apply(temp, 1, function(x)
paste(x, collapse = " for block ")), collapse = " and "),
".\nThis results in ",
prod(sapply(test.keepX, length)),
" models being fitted for each component and each nrepeat, this may take some time to run, be patient!",
sep = ""
)
)
if (is (BPPARAM, 'SerialParam'))
{
message(paste0(
"\nYou can look into the 'BPPARAM' argument to speed up computation time."
))
} else {
if (progressBar == TRUE)
message(paste0(
"\nAs code is running in parallel, the progressBar is not available."
))
}
## ----------- END checks -----------#
## ----------- NA calculation -----------
misdata = c(sapply(X, anyNA), Y = FALSE) # Detection of missing data. we assume no missing values in the factor Y
is.na.A = vector("list", length = length(X))
for (q in seq_along(X))
{
if (misdata[q])
{
is.na.A[[q]] = is.na(X[[q]])
#ind.NA[[q]] = which(apply(is.na.A[[q]], 1, sum) > 0) # calculated only once
#ind.NA.col[[q]] = which(apply(is.na.A[[q]], 2, sum) >0) # indice of the col that have missing values. used in the deflation
}
}
## ----------- END NA calculation ----------- #
# if some components have already been tuned (eg comp1 and comp2), we're only tuning the following ones (comp3 comp4 .. ncomp)
if ((!is.null(already.tested.X)) & length(already.tested.X) > 0)
{
comp.real = (length(already.tested.X[[1]]) + 1):ncomp
#check and match already.tested.X to X
if (length(already.tested.X[[1]]) > 0)
{
if (length(unique(names(already.tested.X))) != length(already.tested.X) |
sum(is.na(match(names(
already.tested.X
), names(X)))) > 0)
stop(
"Each entry of 'already.tested.X' must have a unique name corresponding to a block of 'X'"
)
}
} else {
comp.real = seq_len(ncomp)
}
# near zero var on the whole data sets. It will be performed inside each fold as well
if (near.zero.var == TRUE)
{
nzv.A = lapply(X, nearZeroVar)
for (q in seq_along(X))
{
if (length(nzv.A[[q]]$Position) > 0)
{
names.remove.X = colnames(X[[q]])[nzv.A[[q]]$Position]
X[[q]] = X[[q]][, -nzv.A[[q]]$Position, drop = FALSE]
warning(
"Zero- or near-zero variance predictors.\n Reset predictors matrix to not near-zero variance predictors.\n See $nzv for problematic predictors."
)
if (ncol(X[[q]]) == 0)
stop(paste0("No more variables in", X[[q]]))
#need to check that the keepA[[q]] is now not higher than ncol(A[[q]])
if (any(test.keepX[[q]] > ncol(X[[q]])))
test.keepX[[q]][which(test.keepX[[q]] > ncol(X[[q]]))] = ncol(X[[q]])
}
}
}
N.test.keepX = nrow(expand.grid(test.keepX))
mat.error.rate = list()
mat.sd.error = matrix(0,
nrow = N.test.keepX,
ncol = ncomp - length(already.tested.X[[1]]))
mat.mean.error = matrix(nrow = N.test.keepX,
ncol = ncomp - length(already.tested.X[[1]]))
mat.error.rate = list()
error.per.class.keepX.opt = list()
error.per.class.keepX.opt.mean = matrix(
0,
nrow = nlevels(Y),
ncol = length(comp.real),
dimnames = list(c(levels(Y)), c(paste0('comp', comp.real)))
)
error.opt.per.comp = matrix(
nrow = nrepeat,
ncol = length(comp.real),
dimnames = list(paste("nrep", seq_len(nrepeat), sep = "."), paste0("comp", comp.real))
)
if (light.output == FALSE)
class.all = list()
## ----------- tune components -----------
# successively tune the components until ncomp: comp1, then comp2, ...
for (comp in seq_along(comp.real))
{
tune_comp <- comp.real[comp]
if (progressBar == TRUE)
cat(sprintf("\ntuning component %s\n", tune_comp))
result = MCVfold.block.splsda(
X,
Y,
validation = validation,
folds = folds,
nrepeat = nrepeat,
ncomp = tune_comp,
choice.keepX = already.tested.X,
scheme = scheme,
design = design,
init = init,
tol = tol,
test.keepX = test.keepX,
measure = measure,
dist = dist,
scale = scale,
weighted = weighted,
near.zero.var = near.zero.var,
progressBar = progressBar,
max.iter = max.iter,
misdata = misdata,
is.na.A = is.na.A,
BPPARAM = BPPARAM
)
## returns error.rate for all test.keepX
# in the following, there is [[1]] because 'tune' is working with only 1 distance and 'MCVfold.block.splsda' can work with multiple distances
mat.error.rate[[comp]] = result[[measure]]$mat.error.rate[[1]]
mat.mean.error[, comp] = result[[measure]]$error.rate.mean[[1]]
if (!is.null(result[[measure]]$error.rate.sd[[1]]))
mat.sd.error[, comp] = result[[measure]]$error.rate.sd[[1]]
# confusion matrix for keepX.opt
error.per.class.keepX.opt[[comp]] = result[[measure]]$confusion[[1]]
error.per.class.keepX.opt.mean[, comp] = apply(result[[measure]]$confusion[[1]], 1, mean)
# error rate for best keepX
error.opt.per.comp[, comp] = mat.error.rate[[comp]][result[[measure]]$ind.keepX.opt[[1]], ]
# best keepX
already.tested.X = result[[measure]]$choice.keepX
if (light.output == FALSE)
{
#prediction of each samples for each fold and each repeat, on each comp
class.all[[comp]] = result$class.comp[[1]]
}
}
## ----------- END tune components ----------- #
## ----------- output -----------
rownames(mat.mean.error) = rownames(result[[measure]]$mat.error.rate[[1]])
colnames(mat.mean.error) = paste0("comp", comp.real)
names(mat.error.rate) = c(paste0("comp", comp.real))
names(error.per.class.keepX.opt) = c(paste0("comp", comp.real))
if (nrepeat > 1)
{
rownames(mat.sd.error) = rownames(result[[measure]]$mat.error.rate[[1]])
colnames(mat.sd.error) = paste0("comp", comp.real)
}
# calculating the number of optimal component based on t.tests and the error.rate.all, if more than 3 error.rates(repeat>3)
if (nrepeat > 2 & length(comp.real) > 1)
{
error.keepX = error.opt.per.comp
opt = t.test.process(error.opt.per.comp, alpha = signif.threshold)
ncomp_opt = comp.real[opt]
} else {
ncomp_opt = error.keepX = NULL
}
result = list(
error.rate = mat.mean.error,
error.rate.sd = mat.sd.error,
error.rate.all = mat.error.rate,
choice.keepX = already.tested.X,
choice.ncomp = list(ncomp = ncomp_opt, values = error.keepX),
error.rate.class = error.per.class.keepX.opt
)
result$measure = measure.input
result$call = match.call()
class(result) = "tune.block.splsda"
return(result)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.