#' dd_fit_ebertprelec
#'
#' This fits a hyperbolic model to the data.
#'
#' @param fittingObject core dd fitting object
#' @param id id tag
#'
#' @author Shawn Gilroy <sgilroy1@lsu.edu>
#' @importFrom minpack.lm nls.lm nls.lm.control
dd_fit_ebertprelec <- function(fittingObject, id) {
modelResults = list(
Model = "ebertprelec",
Lnk = NA,
S = NA,
RMSE = NA,
BIC = NA,
AIC = NA,
ED50 = NA,
MBAUC = NA,
Log10MBAUC = NA
)
currentData = fittingObject$data[
which(fittingObject$data[,
as.character(fittingObject$settings['Individual'])] == id),]
currentData$ddX = currentData[,as.character(fittingObject$settings['Delays'])]
currentData$ddY = currentData[,as.character(fittingObject$settings['Values'])]
currentData$ddY = currentData$ddY / as.numeric(fittingObject[[ "maxValue" ]])
startParams = dd_start_ebertprelec(currentData)
modelFitEbertPrelec <- NULL
try(modelFitEbertPrelec <- nls.lm(par = startParams,
fn = residualFunction,
jac = jacobianMatrix,
valueFunction = dd_discount_func_ebertprelec,
jacobianFunction = dd_grad_func_ebertprelec,
x = currentData$ddX,
value = currentData$ddY,
control = nls.lm.control(maxiter = 1000)),
silent = TRUE)
if (!is.null(modelFitEbertPrelec)) {
modelResults[[ "Lnk" ]] = modelFitEbertPrelec$par[["lnk"]]
modelResults[[ "S" ]] = modelFitEbertPrelec$par[["s"]]
modelResults[[ "RMSE" ]] = sqrt(modelFitEbertPrelec$deviance/length(modelFitEbertPrelec$fvec))
modelResults[[ "BIC" ]] = stats::BIC(logLik.nls.lm(modelFitEbertPrelec))
modelResults[[ "AIC" ]] = stats::AIC(logLik.nls.lm(modelFitEbertPrelec))
modelResults[[ "ED50" ]] = dd_ed50_ebertprelec(
Lnk = modelFitEbertPrelec$par[["lnk"]],
s = modelFitEbertPrelec$par[["s"]],
currentData
)
modelResults[[ "MBAUC" ]] = dd_mbauc_ebertprelec(
A = 1,
Lnk = modelFitEbertPrelec$par[["lnk"]],
s = modelFitEbertPrelec$par[["s"]],
startDelay = min(currentData$ddX),
endDelay = max(currentData$ddX)
)
modelResults[[ "Log10MBAUC" ]] = dd_mbauc_log10_ebertprelec(
A = 1,
Lnk = modelFitEbertPrelec$par[["lnk"]],
s = modelFitEbertPrelec$par[["s"]],
startDelay = min(currentData$ddX),
endDelay = max(currentData$ddX)
)
modelResults[[ "Status" ]] = paste("Code:", modelFitEbertPrelec$info,
"- Message:", modelFitEbertPrelec$message,
sep = " ")
}
fittingObject$results[[as.character(id)]][["ebertprelec"]] = modelResults
fittingObject
}
#' dd_start_ebertprelec
#'
#' Extract starting parameters
#'
#' @param currentData current data set
#'
#' @author Shawn Gilroy <sgilroy1@lsu.edu>
dd_start_ebertprelec <- function(currentData) {
startlnK <- seq(-12, 12, 0.1)
starts <- seq(.01, 1, 0.01)
lengthLnK <- length(startlnK)
lengthX = nrow(currentData)
lengthS <- length(starts)
SSlnK <- rep(startlnK, lengthS)
SSs <- sort(rep(starts, lengthLnK))
sumSquares <- rep(NA, lengthS * lengthLnK)
SY <- rep(currentData$ddY, lengthS * lengthLnK)
SlnK <- rep(sort(rep(startlnK,lengthX)), lengthS)
Ss <- sort(rep(starts, lengthX * lengthLnK))
projection <- exp(-(exp(SlnK) * currentData$ddX)^Ss)
sqResidual <- (SY - projection)^2
for (j in 1:(lengthS*lengthLnK)) sumSquares[j] <- sum(sqResidual[(j - 1) * lengthX + 1:lengthX])
presort <- data.frame(SSlnK, SSs, sumSquares)
sorted <- presort[order(presort[,"sumSquares"]),]
ini.par <- c(lnk = sorted$SSlnK[1],
s = sorted$SSs[1])
ini.par
}
#' dd_ed50_ebertprelec
#'
#' @param Lnk parameter
#' @param s parameter
#' @param currentData currentData
#'
#' @author Shawn Gilroy <sgilroy1@lsu.edu>
dd_ed50_ebertprelec <- function(Lnk, s, currentData) {
lowDelay <- 0
highDelay <- max(currentData$ddX)*10
while ((highDelay - lowDelay) > 0.001) {
lowEst <- integrand_ebertprelec( lowDelay, Lnk, s)
midEst <- integrand_ebertprelec( (lowDelay + highDelay)/2, Lnk, s)
highEst <- integrand_ebertprelec( highDelay, Lnk, s)
if (lowEst > 0.5 && midEst > 0.5) {
lowDelay <- (lowDelay + highDelay)/2
highDelay <- highDelay
} else if (highEst < 0.5 && midEst < 0.5) {
lowDelay <- lowDelay
highDelay <- (lowDelay + highDelay)/2
}
}
return(log((lowDelay + highDelay)/2))
}
#' dd_mbauc_ebertprelec
#'
#' @param A maximum value
#' @param Lnk parameter value
#' @param s parameter value
#' @param startDelay time point
#' @param endDelay time point
#'
#' @author Shawn Gilroy <sgilroy1@lsu.edu>
dd_mbauc_ebertprelec <- function(A, Lnk, s, startDelay, endDelay) {
maxX = endDelay
minX = startDelay
maximumArea = (maxX - minX) * A
area = stats::integrate(integrand_ebertprelec,
lower = minX,
upper = maxX,
lnK = Lnk,
s = s)$value/maximumArea
return(area)
}
#' dd_mbauc_log10_ebertprelec
#'
#' @param A maximum value
#' @param Lnk parameter value
#' @param s parameter value
#' @param startDelay time point
#' @param endDelay time point
#'
#' @author Shawn Gilroy <sgilroy1@lsu.edu>
dd_mbauc_log10_ebertprelec <- function(A, Lnk, s, startDelay, endDelay) {
maxX = log10(endDelay)
minX = log10(startDelay)
maximumArea = (maxX - minX) * A
area = stats::integrate(integrand_ebertprelec_log10,
lower = minX,
upper = maxX,
lnK = Lnk,
s = s)$value/maximumArea
return(area)
}
#' Ebert & Prelec Value Function
#'
#' @param x observation at point n (X)
#' @param lnk fitted parameter
#' @param s fitted parameter
#'
#' @return projected, subjective value
#' @author Shawn Gilroy <sgilroy1@lsu.edu>
#' @export
dd_discount_func_ebertprelec <- function(x, lnk, s)
{
func <- exp(-(exp(lnk)*x)^s)
eval(func)
}
#' Ebert & Prelec Helper for Nonlinear Fitting
#'
#' @param x observation at point n (X)
#' @param lnk fitted parameter
#' @param s fitted parameter
#'
#' @return projected, subjective value
#' @author Shawn Gilroy <sgilroy1@lsu.edu>
dd_grad_func_ebertprelec <- function(x, lnk, s)
{
func <- expression(exp(-(exp(lnk)*x)^s))
c(eval(stats::deriv(func, "lnk")),
eval(stats::deriv(func, "s")))
}
#' Ebert & Prelec's Integrand helper
#'
#' This integrand helper is a projection of the integrand with delays represented as normal
#'
#' @param x observation at point n (X)
#' @param lnK fitted parameter
#' @param s fitted parameter
#'
#' @return Numerical Integration Projection
#' @author Shawn Gilroy <sgilroy1@lsu.edu>
integrand_ebertprelec <- function(x, lnK, s) { exp(-(exp(lnK)*x)^s) }
#' Ebert & Prelec's ep Integrand helper (log10)
#'
#' This integrand helper is a projection of the integrand with delays represented in the log base 10 scale
#'
#' @param x observation at point n (X)
#' @param lnK fitted parameter
#' @param s fitted parameter
#'
#' @return Numerical Integration Projection
#' @author Shawn Gilroy <sgilroy1@lsu.edu>
integrand_ebertprelec_log10 <- function(x, lnK, s) { exp(-(exp(lnK)*(10^x))^s) }
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.