#' @title Prediction Object for Forecasting
#'
#' @include PredictionForecast.R
#'
#' @description
#' This object wraps the predictions returned by a learner of class [LearnerForecast], i.e.
#' the predicted response and standard error.
#'
#' @template seealso_prediction
#' @export
#' @examples
#' task = mlr3::tsk("airpassengers")
#' learner = mlr3::lrn("forecast.average")
#' learner$train(task, 1:30)
#' p = learner$predict(task, 31:50)
#' p$predict_types
#' head(data.table::as.data.table(p))
PredictionForecast = R6::R6Class("PredictionForecast",
inherit = Prediction,
cloneable = FALSE,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#'
#' @param task ([TaskRegr])\cr
#' Task, used to extract defaults for `row_ids` and `truth`.
#'
#' @param row_ids (`integer()`)\cr
#' Row ids of the predicted observations, i.e. the row ids of the test set.
#'
#' @param truth (`numeric()`)\cr
#' True (observed) response.
#'
#' @param response (`numeric()`)\cr
#' Vector of numeric response values.
#' One element for each observation in the test set.
#'
#' @param se (`numeric()`)\cr
#' Numeric vector of predicted standard errors.
#' One element for each observation in the test set.
#'
#' @param distr (`VectorDistribution`)\cr
#' `VectorDistribution` from package distr6 (in repository \url{https://raphaels1.r-universe.dev}).
#' Each individual distribution in the vector represents the random variable 'survival time'
#' for an individual observation.
#'
#' @param check (`logical(1)`)\cr
#' If `TRUE`, performs some argument checks and predict type conversions.
initialize = function(task = NULL,
row_ids = task$row_ids,
truth = task$truth(),
response = NULL,
se = NULL,
distr = NULL,
check = TRUE) {
pdata = list(row_ids = row_ids, truth = truth, response = response, se = se, distr = distr)
pdata = discard(pdata, is.null)
class(pdata) = c("PredictionDataForecast", "PredictionData")
if (check) {
pdata = check_prediction_data(pdata)
}
self$task_type = "forecast"
self$predict_types = c("response", "se", "distr")[c(!is.null(response), !is.null(se), !is.null(distr))]
self$man = "mlr3temporal::PredictionForecast"
self$data = pdata
},
#' @description
#' Printer.
#' @param ... (ignored).
print = function(...) {
data = as.data.table(self)
if (!nrow(data)) {
catf("%s for 0 observations", format(self))
} else {
catf("%s for %i observations:", format(self), nrow(data))
print(data, nrows = 10L, topn = 3L, class = FALSE, row.names = FALSE, print.keys = FALSE)
}
},
#' @description
#' Access to the stored predicted response.
#' @param level (`numeric(1)`)\cr
#' Confidence level in percent.
conf_int = function(level = 95) {
assert_integerish(level, lower = 0, upper = 100)
lapply(colnames(self$response), function(x) {
setnames(
data.table(
upper = self$response[, ..x] + se_to_ci(se = self$se[, ..x], level),
lower = self$response[, ..x] - se_to_ci(se = self$se[, ..x], level)
),
c(
paste0(eval(x), "_upper_", eval(level)),
paste0(eval(x), "_lower_", eval(level))
)
)
})
}
),
active = list(
#' @field response (`numeric()`)\cr
#' Access the stored predicted response.
response = function() {
self$data$response %??% rep(NA_real_, length(self$data$tab$truth$row_id))
},
#' @field se (`numeric()`)\cr
#' Access the stored standard error.
se = function() {
self$data$se %??% rep(NA_real_, length(self$data$tab$truth$row_id))
},
#' @field missing (`integer()`)\cr
#' Returns `row_ids` for which the predictions are missing or incomplete.
missing = function() {
miss = logical(nrow(self$data$truth))
if ("response" %in% self$predict_types) {
miss[apply(self$response, 1, anyNA)] = TRUE
}
if ("se" %in% self$predict_types) {
miss[apply(self$se, 1, anyNA)] = TRUE
}
self$row_ids[miss]
}
)
)
#' @export
as.data.table.PredictionForecast = function(x, ...) { # nolint
# Prefix entries
tab = map(c("truth", x$predict_types), function(type) {
xs = copy(x$data[[type]])
if (length(names(xs)) > 1) {
setnames(xs, names(xs), paste0(type, ".", names(xs)))
}
return(xs)
})
tab = do.call('cbind', c(data.table("row_ids" = x$data[["row_ids"]]), tab))
tab
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.