mlr_graphs_distrcompositor | R Documentation |
Wrapper around PipeOpDistrCompositor or PipeOpBreslow to simplify Graph creation.
pipeline_distrcompositor(
learner,
estimator = "kaplan",
form = "aft",
overwrite = FALSE,
scale_lp = FALSE,
graph_learner = FALSE
)
learner |
|
estimator |
( |
form |
( |
overwrite |
( |
scale_lp |
( |
graph_learner |
( |
mlr3pipelines::Graph or mlr3pipelines::GraphLearner
This Graph can be instantiated via the dictionary mlr_graphs or with the associated sugar function ppl():
mlr_graphs$get("distrcompositor") ppl("distrcompositor")
Other pipelines:
mlr_graphs_crankcompositor
,
mlr_graphs_probregr
,
mlr_graphs_responsecompositor
,
mlr_graphs_survaverager
,
mlr_graphs_survbagging
,
mlr_graphs_survtoclassif_IPCW
,
mlr_graphs_survtoclassif_disctime
,
mlr_graphs_survtoregr_pem
## Not run:
library(mlr3pipelines)
# let's change the distribution prediction of Cox (Breslow-based) to an AFT form:
task = tsk("rats")
grlrn = ppl(
"distrcompositor",
learner = lrn("surv.coxph"),
estimator = "kaplan",
form = "aft",
overwrite = TRUE,
graph_learner = TRUE
)
grlrn$train(task)
grlrn$predict(task)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.