mlr_measures_surv.hung_auc | R Documentation |
Calls survAUC::AUC.hc()
.
Assumes random censoring.
All measures implemented from survAUC should be used with
care, we are aware of problems in implementation that sometimes cause fatal
errors in R.
In future updates some of these measures may be re-written and implemented
directly in mlr3proba
.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
MeasureSurvHungAUC$new() mlr_measures$get("surv.hung_auc") msr("surv.hung_auc")
Id | Type | Default | Levels |
integrated | logical | TRUE | TRUE, FALSE |
times | untyped | - | |
Type: "surv"
Range: [0, 1]
Minimize: FALSE
Required prediction: lp
integrated
(logical(1)
)
If TRUE
(default), returns the integrated score (eg across
time points); otherwise, not integrated (eg at a single time point).
times
(numeric()
)
If integrated == TRUE
then a vector of time-points over which to integrate the score.
If integrated == FALSE
then a single time point at which to return the score.
mlr3::Measure
-> mlr3proba::MeasureSurv
-> mlr3proba::MeasureSurvAUC
-> MeasureSurvHungAUC
new()
Creates a new instance of this R6 class.
MeasureSurvHungAUC$new()
clone()
The objects of this class are cloneable with this method.
MeasureSurvHungAUC$clone(deep = FALSE)
deep
Whether to make a deep clone.
Hung H, Chiang C (2010). “Estimation methods for time-dependent AUC models with survival data.” The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 38(1), 8–26. https://www.jstor.org/stable/27805213.
Other survival measures:
mlr_measures_surv.calib_alpha
,
mlr_measures_surv.calib_beta
,
mlr_measures_surv.calib_index
,
mlr_measures_surv.chambless_auc
,
mlr_measures_surv.cindex
,
mlr_measures_surv.dcalib
,
mlr_measures_surv.graf
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.logloss
,
mlr_measures_surv.mae
,
mlr_measures_surv.mse
,
mlr_measures_surv.nagelk_r2
,
mlr_measures_surv.oquigley_r2
,
mlr_measures_surv.rcll
,
mlr_measures_surv.rmse
,
mlr_measures_surv.schmid
,
mlr_measures_surv.song_auc
,
mlr_measures_surv.song_tnr
,
mlr_measures_surv.song_tpr
,
mlr_measures_surv.uno_auc
,
mlr_measures_surv.uno_tnr
,
mlr_measures_surv.uno_tpr
,
mlr_measures_surv.xu_r2
Other AUC survival measures:
mlr_measures_surv.chambless_auc
,
mlr_measures_surv.song_auc
,
mlr_measures_surv.song_tnr
,
mlr_measures_surv.song_tpr
,
mlr_measures_surv.uno_auc
,
mlr_measures_surv.uno_tnr
,
mlr_measures_surv.uno_tpr
Other lp survival measures:
mlr_measures_surv.calib_beta
,
mlr_measures_surv.chambless_auc
,
mlr_measures_surv.nagelk_r2
,
mlr_measures_surv.oquigley_r2
,
mlr_measures_surv.song_auc
,
mlr_measures_surv.song_tnr
,
mlr_measures_surv.song_tpr
,
mlr_measures_surv.uno_auc
,
mlr_measures_surv.uno_tnr
,
mlr_measures_surv.uno_tpr
,
mlr_measures_surv.xu_r2
library(mlr3)
# Define a survival Task
task = tsk("lung")
# Create train and test set
part = partition(task)
# Train Cox learner on the train set
cox = lrn("surv.coxph")
cox$train(task, row_ids = part$train)
# Make predictions for the test set
p = cox$predict(task, row_ids = part$test)
# Integrated AUC score
p$score(msr("surv.hung_auc"), task = task,
train_set = part$train, learner = cox)
# AUC at specific time point
p$score(msr("surv.hung_auc", times = 600), task = task,
train_set = part$train, learner = cox)
# Integrated AUC at specific time points
p$score(msr("surv.hung_auc", times = c(100, 200, 300, 400, 500)),
task = task, train_set = part$train, learner = cox)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.