mlr_learners_surv.rpart: Rpart Survival Trees Survival Learner

mlr_learners_surv.rpartR Documentation

Rpart Survival Trees Survival Learner

Description

Calls rpart::rpart().

  • crank is predicted using rpart::predict.rpart()

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

LearnerSurvRpart$new()
mlr_learners$get("surv.rpart")
lrn("surv.rpart")

Meta Information

  • Task type: “surv”

  • Predict Types: “crank”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”

  • Required Packages: mlr3, mlr3proba, rpart, distr6, survival

Parameters

Id Type Default Levels Range
parms numeric 1 (-\infty, \infty)
minbucket integer - [1, \infty)
minsplit integer 20 [1, \infty)
cp numeric 0.01 [0, 1]
maxcompete integer 4 [0, \infty)
maxsurrogate integer 5 [0, \infty)
maxdepth integer 30 [1, 30]
usesurrogate integer 2 [0, 2]
surrogatestyle integer 0 [0, 1]
xval integer 10 [0, \infty)
cost untyped - -
keep_model logical FALSE TRUE, FALSE -

Initial parameter values

  • xval is set to 0 in order to save some computation time.

  • model has been renamed to keep_model.

Super classes

mlr3::Learner -> mlr3proba::LearnerSurv -> LearnerSurvRpart

Methods

Public methods

Inherited methods

Method new()

Creates a new instance of this R6 class.

Usage
LearnerSurvRpart$new()

Method importance()

The importance scores are extracted from the model slot variable.importance.

Usage
LearnerSurvRpart$importance()
Returns

Named numeric().


Method selected_features()

Selected features are extracted from the model slot frame$var.

Usage
LearnerSurvRpart$selected_features()
Returns

character().


Method clone()

The objects of this class are cloneable with this method.

Usage
LearnerSurvRpart$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

References

Breiman L, Friedman JH, Olshen RA, Stone CJ (1984). Classification And Regression Trees. Routledge. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1201/9781315139470")}.

See Also

Other survival learners: mlr_learners_surv.coxph, mlr_learners_surv.kaplan


mlr-org/mlr3proba documentation built on April 12, 2025, 4:38 p.m.