mlr_graphs_probregr | R Documentation |
Wrapper around PipeOpProbregr to simplify Graph creation.
pipeline_probregr(
learner,
learner_se = NULL,
dist = "Uniform",
graph_learner = FALSE
)
learner |
|
learner_se |
|
dist |
( |
graph_learner |
( |
mlr3pipelines::Graph or mlr3pipelines::GraphLearner
This Graph can be instantiated via the dictionary mlr_graphs or with the associated sugar function ppl():
mlr_graphs$get("probregr") ppl("probregr")
Other pipelines:
mlr_graphs_crankcompositor
,
mlr_graphs_distrcompositor
,
mlr_graphs_responsecompositor
,
mlr_graphs_survaverager
,
mlr_graphs_survbagging
,
mlr_graphs_survtoclassif_IPCW
,
mlr_graphs_survtoclassif_disctime
,
mlr_graphs_survtoregr_pem
## Not run:
library(mlr3)
library(mlr3pipelines)
task = tsk("boston_housing")
# method 1 - same learner for response and se
pipe = ppl(
"probregr",
learner = lrn("regr.featureless", predict_type = "se"),
dist = "Uniform"
)
pipe$train(task)
pipe$predict(task)
# method 2 - different learners for response and se
pipe = ppl(
"probregr",
learner = lrn("regr.rpart"),
learner_se = lrn("regr.featureless", predict_type = "se"),
dist = "Normal"
)
pipe$train(task)
pipe$predict(task)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.