mlr_measures_surv.calib_alpha | R Documentation |
This calibration method is defined by estimating
\hat{\alpha} = \sum \delta_i / \sum H_i(T_i)
where \delta
is the observed censoring indicator from the test data,
H_i
is the predicted cumulative hazard, and T_i
is the observed
survival time (event or censoring).
The standard error is given by
\hat{\alpha_{se}} = exp(1/\sqrt{\sum \delta_i})
The model is well calibrated if the estimated \hat{\alpha}
coefficient
(returned score) is equal to 1.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
MeasureSurvCalibrationAlpha$new() mlr_measures$get("surv.calib_alpha") msr("surv.calib_alpha")
Id | Type | Default | Levels | Range |
eps | numeric | 0.001 | [0, 1] |
|
se | logical | FALSE | TRUE, FALSE | - |
method | character | ratio | ratio, diff | - |
truncate | numeric | Inf | (-\infty, \infty) |
|
Type: "surv"
Range: (-\infty, \infty)
Minimize: FALSE
Required prediction: distr
eps
(numeric(1)
)
Very small number to substitute zero values in order to prevent errors
in e.g. log(0) and/or division-by-zero calculations.
Default value is 0.001.
se
(logical(1)
)
If TRUE
then return standard error of the measure, otherwise the score
itself (default).
method
(character(1)
)
Returns \hat{\alpha}
if equal to ratio
(default) and
|1-\hat{\alpha}|
if equal to diff
.
With diff
, the output score can be minimized and for example be used for
tuning purposes. This parameter takes effect only if se
is FALSE
.
truncate
(double(1)
)
This parameter controls the upper bound of the output score.
We use truncate = Inf
by default (so no truncation) and it's up to the user
to set this up reasonably given the chosen method
.
Note that truncation may severely limit automated tuning with this measure
using method = diff
.
mlr3::Measure
-> mlr3proba::MeasureSurv
-> MeasureSurvCalibrationAlpha
new()
Creates a new instance of this R6 class.
MeasureSurvCalibrationAlpha$new(method = "ratio")
method
defines which output score to return, see "Parameter details" section.
clone()
The objects of this class are cloneable with this method.
MeasureSurvCalibrationAlpha$clone(deep = FALSE)
deep
Whether to make a deep clone.
Van Houwelingen, C. H (2000). “Validation, calibration, revision and combination of prognostic survival models.” Statistics in Medicine, 19(24), 3401–3415. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1002/1097-0258(20001230)19:24<3401::AID-SIM554>3.0.CO;2-2")}.
Other survival measures:
mlr_measures_surv.calib_beta
,
mlr_measures_surv.calib_index
,
mlr_measures_surv.chambless_auc
,
mlr_measures_surv.cindex
,
mlr_measures_surv.dcalib
,
mlr_measures_surv.graf
,
mlr_measures_surv.hung_auc
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.logloss
,
mlr_measures_surv.mae
,
mlr_measures_surv.mse
,
mlr_measures_surv.nagelk_r2
,
mlr_measures_surv.oquigley_r2
,
mlr_measures_surv.rcll
,
mlr_measures_surv.rmse
,
mlr_measures_surv.schmid
,
mlr_measures_surv.song_auc
,
mlr_measures_surv.song_tnr
,
mlr_measures_surv.song_tpr
,
mlr_measures_surv.uno_auc
,
mlr_measures_surv.uno_tnr
,
mlr_measures_surv.uno_tpr
,
mlr_measures_surv.xu_r2
Other calibration survival measures:
mlr_measures_surv.calib_beta
,
mlr_measures_surv.calib_index
,
mlr_measures_surv.dcalib
Other distr survival measures:
mlr_measures_surv.calib_index
,
mlr_measures_surv.dcalib
,
mlr_measures_surv.graf
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.logloss
,
mlr_measures_surv.rcll
,
mlr_measures_surv.schmid
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.