mlr_graphs_survtoclassif_IPCW | R Documentation |
Wrapper around PipeOpTaskSurvClassifIPCW and PipeOpPredClassifSurvIPCW to simplify Graph creation.
pipeline_survtoclassif_IPCW(
learner,
tau = NULL,
eps = 0.001,
graph_learner = FALSE
)
learner |
LearnerClassif |
tau |
( |
eps |
( |
graph_learner |
( |
The pipeline consists of the following steps:
PipeOpTaskSurvClassifIPCW Converts TaskSurv to a TaskClassif.
A LearnerClassif is fit and predicted on the new TaskClassif
.
PipeOpPredClassifSurvIPCW transforms the resulting PredictionClassif to PredictionSurv.
mlr3pipelines::Graph or mlr3pipelines::GraphLearner
This Graph can be instantiated via the dictionary mlr_graphs or with the associated sugar function ppl():
mlr_graphs$get("survtoclassif_IPCW") ppl("survtoclassif_IPCW")
Additional alias id for pipeline construction:
ppl("survtoclassif_vock")
Vock, M D, Wolfson, Julian, Bandyopadhyay, Sunayan, Adomavicius, Gediminas, Johnson, E P, Vazquez-Benitez, Gabriela, O'Connor, J P (2016). “Adapting machine learning techniques to censored time-to-event health record data: A general-purpose approach using inverse probability of censoring weighting.” Journal of Biomedical Informatics, 61, 119–131. \Sexpr[results=rd]{tools:::Rd_expr_doi("https://doi.org/10.1016/j.jbi.2016.03.009")}, https://www.sciencedirect.com/science/article/pii/S1532046416000496.
Other pipelines:
mlr_graphs_crankcompositor
,
mlr_graphs_distrcompositor
,
mlr_graphs_probregr
,
mlr_graphs_responsecompositor
,
mlr_graphs_survaverager
,
mlr_graphs_survbagging
,
mlr_graphs_survtoclassif_disctime
,
mlr_graphs_survtoregr_pem
## Not run:
library(mlr3)
library(mlr3learners)
library(mlr3pipelines)
task = tsk("lung")
part = partition(task)
grlrn = ppl(
"survtoclassif_IPCW",
learner = lrn("classif.rpart"),
tau = 500, # Observations after 500 days are censored
graph_learner = TRUE
)
grlrn$train(task, row_ids = part$train)
pred = grlrn$predict(task, row_ids = part$test)
pred # crank and distr at the cutoff time point included
# score predictions
pred$score() # C-index
pred$score(msr("surv.brier", times = 500, integrated = FALSE)) # Brier score at tau
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.