mlr_measures_surv.mse | R Documentation |
Calculates the mean squared error (MSE).
The MSE is defined by
\frac{1}{n} \sum ((t - \hat{t})^2)
where t
is the true value and \hat{t}
is the prediction.
Censored observations in the test set are ignored.
This Measure can be instantiated via the dictionary mlr_measures or with the associated sugar function msr():
MeasureSurvMSE$new() mlr_measures$get("surv.mse") msr("surv.mse")
Id | Type | Default | Levels |
se | logical | FALSE | TRUE, FALSE |
Type: "surv"
Range: [0, \infty)
Minimize: TRUE
Required prediction: response
se
(logical(1)
)
If TRUE
then returns standard error of the measure otherwise
returns the mean across all individual scores, e.g. the mean of
the per observation scores.
Default is FALSE
(returns the mean).
mlr3::Measure
-> mlr3proba::MeasureSurv
-> MeasureSurvMSE
new()
Creates a new instance of this R6 class.
MeasureSurvMSE$new()
clone()
The objects of this class are cloneable with this method.
MeasureSurvMSE$clone(deep = FALSE)
deep
Whether to make a deep clone.
Other survival measures:
mlr_measures_surv.calib_alpha
,
mlr_measures_surv.calib_beta
,
mlr_measures_surv.calib_index
,
mlr_measures_surv.chambless_auc
,
mlr_measures_surv.cindex
,
mlr_measures_surv.dcalib
,
mlr_measures_surv.graf
,
mlr_measures_surv.hung_auc
,
mlr_measures_surv.intlogloss
,
mlr_measures_surv.logloss
,
mlr_measures_surv.mae
,
mlr_measures_surv.nagelk_r2
,
mlr_measures_surv.oquigley_r2
,
mlr_measures_surv.rcll
,
mlr_measures_surv.rmse
,
mlr_measures_surv.schmid
,
mlr_measures_surv.song_auc
,
mlr_measures_surv.song_tnr
,
mlr_measures_surv.song_tpr
,
mlr_measures_surv.uno_auc
,
mlr_measures_surv.uno_tnr
,
mlr_measures_surv.uno_tpr
,
mlr_measures_surv.xu_r2
Other response survival measures:
mlr_measures_surv.mae
,
mlr_measures_surv.rmse
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.