#' @title Frozen Rush Data Storage
#'
#' @description
#' Freezes the Redis data base of an [ArchiveAsyncTuning] to a `data.table::data.table()`.
#' No further points can be added to the archive but the data can be accessed and analyzed.
#' Useful when the Redis data base is not permanently available.
#' Use the callback [mlr3tuning.async_freeze_archive] to freeze the archive after the optimization has finished.
#'
#' @section S3 Methods:
#' * `as.data.table(archive)`\cr
#' [ArchiveAsyncTuningFrozen] -> [data.table::data.table()]\cr
#' Returns a tabular view of all performed function calls of the Objective.
#' The `x_domain` column is unnested to separate columns.
#'
#' @export
ArchiveAsyncTuningFrozen = R6Class("ArchiveAsyncTuningFrozen",
inherit = bbotk::ArchiveAsyncFrozen,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
#'
#' @param archive ([ArchiveAsyncTuning])\cr
#' The archive to freeze.
initialize = function(archive) {
private$.benchmark_result = archive$benchmark_result
private$.internal_search_space = archive$internal_search_space
super$initialize(archive)
},
#' @description
#' Retrieve [mlr3::Learner] of the i-th evaluation, by position or by unique hash `uhash`.
#' `i` and `uhash` are mutually exclusive.
#' Learner does not contain a model. Use `$learners()` to get learners with models.
#'
#' @param i (`integer(1)`)\cr
#' The iteration value to filter for.
#'
#' @param uhash (`logical(1)`)\cr
#' The `uhash` value to filter for.
learner = function(i = NULL, uhash = NULL) {
self$resample_result(i = i, uhash = uhash)$learner
},
#' @description
#' Retrieve list of trained [mlr3::Learner] objects of the i-th evaluation, by position or by unique hash `uhash`.
#' `i` and `uhash` are mutually exclusive.
#'
#' @param i (`integer(1)`)\cr
#' The iteration value to filter for.
#'
#' @param uhash (`logical(1)`)\cr
#' The `uhash` value to filter for.
learners = function(i = NULL, uhash = NULL) {
self$resample_result(i = i, uhash = uhash)$learners
},
#' @description
#' Retrieve param values of the i-th evaluation, by position or by unique hash `uhash`.
#' `i` and `uhash` are mutually exclusive.
#'
#' @param i (`integer(1)`)\cr
#' The iteration value to filter for.
#'
#' @param uhash (`logical(1)`)\cr
#' The `uhash` value to filter for.
learner_param_vals = function(i = NULL, uhash = NULL) {
self$learner(i = i, uhash = uhash)$param_set$values
},
#' @description
#' Retrieve list of [mlr3::Prediction] objects of the i-th evaluation, by position or by unique hash `uhash`.
#' `i` and `uhash` are mutually exclusive.
#'
#' @param i (`integer(1)`)\cr
#' The iteration value to filter for.
#'
#' @param uhash (`logical(1)`)\cr
#' The `uhash` value to filter for.
predictions = function(i = NULL, uhash = NULL) {
self$resample_result(i = i, uhash = uhash)$predictions()
},
#' @description
#' Retrieve [mlr3::ResampleResult] of the i-th evaluation, by position or by unique hash `uhash`.
#' `i` and `uhash` are mutually exclusive.
#'
#' @param i (`integer(1)`)\cr
#' The iteration value to filter for.
#'
#' @param uhash (`logical(1)`)\cr
#' The `uhash` value to filter for.
resample_result = function(i = NULL, uhash = NULL) {
self$benchmark_result$resample_result(i = i, uhash = uhash)
},
#' @description
#' Printer.
#'
#' @param ... (ignored).
print = function() {
catf("%s with %i evaluations", format(self), self$n_evals)
print(as.data.table(self, unnest = NULL, exclude_columns = c(
"x_domain",
"timestamp_xs",
"timestamp_ys",
"runtime_learners",
"resample_result",
"worker_id",
"keys",
"pid",
"state")), digits = 2)
}
),
active = list(
#' @field internal_search_space ([paradox::ParamSet])\cr
#' The search space containing those parameters that are internally optimized by the [`mlr3::Learner`].
internal_search_space = function(rhs) {
assert_ro_binding(rhs)
private$.internal_search_space
},
#' @field benchmark_result ([mlr3::BenchmarkResult])\cr
#' Benchmark result.
benchmark_result = function() {
private$.benchmark_result
}
),
private = list(
.internal_search_space = NULL,
.benchmark_result = NULL
)
)
#' @export
as.data.table.ArchiveAsyncTuningFrozen = function(x, ..., unnest = "internal_tuned_values", exclude_columns = NULL, measures = NULL) {
data = copy(x$data)
if (!nrow(data)) return(data.table())
# unnest columns
cols = intersect(unnest, names(data))
tab = unnest(data, cols, prefix = "{col}_")
# add extra measures
cols_y_extra = NULL
if (!is.null(measures) && !is.null(tab$resample_result)) {
measures = assert_measures(as_measures(measures), learner = x$learners(1)[[1]], task = x$resample_result(1)$task)
cols_y_extra = map_chr(measures, "id")
scores = map_dtr(x$data$resample_result, function(rr) as.data.table(as.list(rr$aggregate(measures))))
tab = cbind(tab, scores)
}
cols_x_domain = if ("x_domain" %in% cols) {
# get all ids of x_domain
# trafo could add unknown ids
x_domain_ids = paste0("x_domain_", unique(unlist(map(x$data$x_domain, names))))
setdiff(x_domain_ids, exclude_columns)
}
cols_internal_tuned_values = if ("internal_tuned_values" %in% cols) {
internal_tuned_values_ids = paste0("internal_tuned_values_", unique(unlist(map(x$data$internal_tuned_values, names))))
setdiff(internal_tuned_values_ids, exclude_columns)
}
setcolorder(tab, c(x$cols_x, x$cols_y, cols_y_extra, cols_internal_tuned_values, cols_x_domain, "runtime_learners", "timestamp_xs", "timestamp_ys"))
tab[, setdiff(names(tab), exclude_columns), with = FALSE]
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.