#' @title Survival Random Forest SRC Learner
#'
#' @name mlr_learners_surv.rfsrc
#'
#' @description
#' A [mlr3proba::LearnerSurv] implementing rfsrc from package
#' \CRANpkg{randomForestSRC}.
#' Calls [randomForestSRC::rfsrc()].
#'
#' @details
#' [randomForestSRC::predict.rfsrc()] returns both cumulative hazard function (chf) and
#' survival function (surv) but uses different estimators to derive these. `chf` uses a
#' bootstrapped Nelson-Aalen estimator, (Ishwaran, 2008) whereas `surv` uses a bootstrapped
#' Kaplan-Meier estimator. The choice of which estimator to use is given by the extra
#' `estimator` hyper-parameter, default is `nelson`.
#'
#' @templateVar id surv.rfsrc
#' @template section_dictionary_learner
#'
#' @references
#' Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS, others (2008).
#' “Random survival forests.” The annals of applied statistics, 2(3), 841–860.
#'
#' Breiman L (2001). “Random Forests.”
#' Machine Learning, 45(1), 5–32. ISSN 1573-0565, doi: 10.1023/A:1010933404324.
#'
#' @template seealso_learner
#' @template example
#' @export
# <Adapt the name to your learner. For regression learners inherit = LearnerRegr>
LearnerSurvRandomForestSRC = R6Class("LearnerSurvRandomForestSRC",
inherit = LearnerSurv,
public = list(
#' @description
#' Creates a new instance of this [R6][R6::R6Class] class.
initialize = function() {
ps = ParamSet$new(
params = list(
ParamInt$new(id = "ntree", default = 1000, lower = 1L, tags = c("train", "predict")),
ParamInt$new(id = "mtry", lower = 1L, tags = "train"),
ParamInt$new(id = "nodesize", default = 15L, lower = 1L, tags = "train"),
ParamInt$new(id = "nodedepth", lower = 1L, tags = "train"),
ParamFct$new(
id = "splitrule", levels = c("logrank", "bs.gradient", "logrankscore"),
default = "logrank", tags = "train"),
ParamInt$new(id = "nsplit", lower = 0, default = 10, tags = "train"),
ParamFct$new(
id = "importance", default = "FALSE",
levels = c("FALSE", "TRUE", "none", "permute", "random", "anti"),
tags = c("train", "predict")),
ParamInt$new(id = "block.size", default = 10L, lower = 1L, tags = c("train", "predict")),
ParamFct$new(
id = "ensemble", default = "all", levels = c("all", "oob", "inbag"),
tags = c("train", "predict")),
ParamFct$new(
id = "bootstrap", default = "by.root",
levels = c("by.root", "by.node", "none", "by.user"), tags = "train"),
ParamFct$new(
id = "samptype", default = "swor", levels = c("swor", "swr"),
tags = "train"),
ParamUty$new(id = "samp", tags = "train"),
ParamLgl$new(id = "membership", default = FALSE, tags = c("train", "predict")),
ParamUty$new(id = "sampsize", tags = "train"),
ParamFct$new(
id = "na.action", default = "na.omit", levels = c("na.omit", "na.impute"),
tags = c("train", "predict")),
ParamInt$new(id = "nimpute", default = 1L, lower = 1L, tags = "train"),
ParamInt$new(id = "ntime", lower = 1L, tags = "train"),
ParamInt$new(id = "cause", lower = 1L, tags = "train"),
ParamFct$new(
id = "proximity", default = "FALSE",
levels = c("FALSE", "TRUE", "inbag", "oob", "all"),
tags = c("train", "predict")),
ParamFct$new(
id = "distance", default = "FALSE",
levels = c("FALSE", "TRUE", "inbag", "oob", "all"),
tags = c("train", "predict")),
ParamFct$new(
id = "forest.wt", default = "FALSE",
levels = c("FALSE", "TRUE", "inbag", "oob", "all"),
tags = c("train", "predict")),
ParamUty$new(id = "xvar.wt", tags = "train"),
ParamUty$new(id = "split.wt", tags = "train"),
ParamLgl$new(id = "forest", default = TRUE, tags = "train"),
ParamFct$new(
id = "var.used", default = "FALSE",
levels = c("FALSE", "all.trees", "by.tree"), tags = c("train", "predict")),
ParamFct$new(
id = "split.depth", default = "FALSE",
levels = c("FALSE", "all.trees", "by.tree"), tags = c("train", "predict")),
ParamInt$new(id = "seed", upper = -1L, tags = c("train", "predict")),
ParamLgl$new(id = "do.trace", default = FALSE, tags = c("train", "predict")),
ParamLgl$new(id = "statistics", default = FALSE, tags = c("train", "predict")),
ParamUty$new(id = "get.tree", tags = "predict"),
ParamFct$new(
id = "outcome", default = "train", levels = c("train", "test"),
tags = "predict"),
ParamInt$new(id = "ptn.count", default = 0L, lower = 0L, tags = "predict"),
ParamFct$new(
id = "estimator", default = "nelson", levels = c("nelson", "kaplan"),
tags = c("predict", "distr"))
)
)
super$initialize(
id = "surv.rfsrc",
packages = "randomForestSRC",
feature_types = c("logical", "integer", "numeric", "factor"),
predict_types = c("crank", "distr"),
param_set = ps,
# selected features is possible but there's a bug somewhere in rfsrc so that the model
# can be trained but not predicted. so public method retained but property not included
properties = c("weights", "missings", "importance", "oob_error"),
man = "mlr3learners.randomforestsrc::mlr_learners_surv.rfsrc"
)
},
#' @description
#' The importance scores are extracted from the model slot `importance`.
#' @return Named `numeric()`.
importance = function() {
if (is.null(self$model$importance) & !is.null(self$model)) {
mlr3misc::stopf("Set 'importance' to one of: {'TRUE', 'permute', 'random', 'anti'}.")
}
sort(self$model$importance, decreasing = TRUE)
},
#' @description
#' Selected features are extracted from the model slot `var.used`.
#' @return `character()`.
selected_features = function() {
if (is.null(self$model$var.used) & !is.null(self$model)) {
mlr3misc::stopf("Set 'var.used' to one of: {'all.trees', 'by.tree'}.")
}
self$model$var.used
},
#' @description
#' OOB error extracted from the model slot `err.rate`.
#' @return `numeric()`.
oob_error = function() {
self$model$err.rate[self$model$ntree]
}
),
private = list(
.train = function(task) {
pv = self$param_set$get_values(tags = "train")
if ("weights" %in% task$properties) {
pv$case.wt = as.numeric(task$weights$weight) # nolint
}
mlr3misc::invoke(randomForestSRC::rfsrc,
formula = task$formula(), data = task$data(),
.args = pv)
},
.predict = function(task) {
newdata = task$data(cols = task$feature_names)
pars_predict = self$param_set$get_values(tags = "predict")
pars_distr = self$param_set$get_values(tags = "distr")
pars_predict = pars_predict[names(pars_predict) %nin% names(pars_distr)]
p = mlr3misc::invoke(predict, object = self$model, newdata = newdata, .args = pars_predict)
# rfsrc uses Nelson-Aalen in chf and Kaplan-Meier for survival, as these
# don't give equivalent results one must be chosen and the relevant functions are transformed
# as required.
# default estimator is nelson, hence nelson selected if NULL
estimator = if (is.null(pars_predict$estimator)) "nelson" else pars_predict$estimator
cdf = if (estimator == "nelson") 1 - exp(-p$chf) else 1 - p$survival
# define WeightedDiscrete distr6 object from predicted survival function
x = rep(list(list(x = self$model$time.interest, cdf = 0)), task$nrow)
for (i in 1:task$nrow) {
x[[i]]$cdf = cdf[i, ]
}
distr = distr6::VectorDistribution$new(
distribution = "WeightedDiscrete", params = x,
decorators = c("CoreStatistics", "ExoticStatistics"))
crank = as.numeric(sapply(x, function(y) sum(y$x * c(y$cdf[1], diff(y$cdf)))))
mlr3proba::PredictionSurv$new(task = task, crank = crank, distr = distr)
}
)
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.