####################################################################################
## Purpose: Run out simulations
##
## Notes: Assumes SLURM cluster
####################################################################################
library(drake)
library(tidyverse)
library(COVIDCurve)
source("R/covidcurve_helper_functions.R")
set.seed(48)
#............................................................
# Read in Various Scenarios for Incidence Curves
#...........................................................
infxn_shapes <- readr::read_csv("data/simdat/infxn_curve_shapes.csv")
# read in fitted rate of seroreversion parameter
weibullparams <- readRDS("results/prior_inputs/weibull_params.RDS")
weibullparams$wscale <- weibullparams$wscale - 13.3 # account for delay in onset of symptoms to seroconversion
#............................................................
# setup fatality data
#............................................................
# make up fatality data
fatalitydata <- tibble::tibble(Strata = c("ma1", "ma2", "ma3", "ma4", "ma5"),
IFR = c(1e-3, 1e-3, 0.05, 0.1, 0.2),
Rho = 1)
demog <- tibble::tibble(Strata = c("ma1", "ma2", "ma3", "ma4", "ma5"),
popN = c(1.2e6, 1.1e6, 1e6, 9e5, 8e5))
#............................................................
# Simulate Under Model
#...........................................................
map <- tibble::tibble(nm = c("expgrowth", "intervene", "secondwave",
"expgrowth", "intervene", "secondwave"),
curve = list(infxn_shapes$expgrowth, infxn_shapes$intervene, infxn_shapes$secondwave,
infxn_shapes$expgrowth, infxn_shapes$intervene, infxn_shapes$secondwave),
sens = 0.85,
spec = c(rep(0.95, 3), rep(0.99, 3)))
map <- tibble::as_tibble(map) %>%
dplyr::mutate(fatalitydata = list(fatalitydata),
demog = list(demog))
#......................
# run covidcurve simulator
#......................
wrap_sim <- function(nm, curve, sens, spec, mod, sero_rate, fatalitydata, demog, sero_days) {
dat <- COVIDCurve::Agesim_infxn_2_death(
fatalitydata = fatalitydata,
m_od = 19.8,
s_od = 0.85,
curr_day = 200,
infections = curve,
simulate_seroreversion = TRUE,
sero_rev_shape = weibullparams$wshape,
sero_rev_scale = weibullparams$wscale,
sens = sens,
spec = spec,
sero_delay_rate = 18.3,
demog = demog,
smplfrac = 1e-3,
return_linelist = FALSE)
# liftover proprtion deaths
totdeaths <- sum(dat$StrataAgg_TimeSeries_Death$Deaths)
prop_strata_obs_deaths <- dat$StrataAgg_TimeSeries_Death %>%
dplyr::group_by(Strata) %>%
dplyr::summarise(Deaths = sum(Deaths),
PropDeaths = Deaths/totdeaths) %>%
dplyr::select(c("Strata", "PropDeaths"))
# liftover obs serology
sero_days <- lapply(sero_days, function(x){seq(from = (x-5), to = (x+5), by = 1)})
obs_serology <- dat$StrataAgg_Seroprev %>%
dplyr::group_by(Strata) %>%
dplyr::filter(ObsDay %in% unlist(sero_days)) %>%
dplyr::mutate(serodaynum = sort(rep(1:length(sero_days), 11))) %>%
dplyr::mutate(
SeroPos = ObsPrev * testedN,
SeroN = testedN ) %>%
dplyr::group_by(Strata, serodaynum) %>%
dplyr::summarise(SeroPos = mean(SeroPos),
SeroN = mean(SeroN)) %>% # seroN doesn't change
dplyr::mutate(SeroStartSurvey = sapply(sero_days, median) - 5,
SeroEndSurvey = sapply(sero_days, median) + 5,
SeroPos = round(SeroPos),
SeroPrev = SeroPos/SeroN,
SeroLCI = NA,
SeroUCI = NA) %>%
dplyr::select(c("SeroStartSurvey", "SeroEndSurvey", "Strata", "SeroPos", "SeroN", "SeroPrev", "SeroLCI", "SeroUCI")) %>%
dplyr::ungroup(.) %>%
dplyr::arrange(SeroStartSurvey, Strata)
inputdata <- list(obs_deaths = dat$Agg_TimeSeries_Death,
prop_deaths = prop_strata_obs_deaths,
obs_serology = obs_serology)
out <- list(simdat = dat,
inputdata = inputdata)
return(out)
}
# run simdat and extract results into separate pieces
map$simdat <- purrr::pmap(map, wrap_sim, sero_days = c(125, 175))
map$inputdata <- purrr::map(map$simdat, "inputdata")
map$simdat <- purrr::map(map$simdat, "simdat", sero_days = c(125, 175))
#......................
# make IFR model
#......................
# sens/spec
get_sens_spec_tbl <- function(sens, spec) {
tibble::tibble(name = c("sens", "spec", "sero_rev_shape", "sero_rev_scale"),
min = c(0.5, 0.5, 1, 197),
init = c(0.8, 0.8, 2.5, 202),
max = c(1, 1, 4, 207),
dsc1 = c(sens*1e3, spec*1e3, weibullparams$wshape, weibullparams$wscale),
dsc2 = c((1e3-sens*1e3), (1e3-spec*1e3), 0.5, 0.1))
}
map$sens_spec_tbl <- purrr::map2(map$sens, map$spec, get_sens_spec_tbl)
# delay priors
tod_paramsdf <- tibble::tibble(name = c("mod", "sod", "sero_con_rate"),
min = c(18, 0, 16),
init = c(19, 0.85, 18),
max = c(20, 1, 21),
dsc1 = c(19.8, 2550, 18.3),
dsc2 = c(0.1, 450, 0.1))
# everything else for region
wrap_make_IFR_model <- function(nm, curve, inputdata, sens_spec_tbl, demog) {
ifr_paramsdf <- make_ma_reparamdf(num_mas = 5, upperMa = 0.4)
knot_paramsdf <- make_splinex_reparamdf(max_xvec = list("name" = "x4", min = 186, init = 190, max = 200, dsc1 = 186, dsc2 = 200),
num_xs = 4)
if (nm == "expgrowth") {
infxn_paramsdf <- make_spliney_reparamdf(max_yvec = list("name" = "y5", min = 0, init = 9, max = 14.92, dsc1 = 0, dsc2 = 14.92),
num_ys = 5)
} else {
infxn_paramsdf <- make_spliney_reparamdf(max_yvec = list("name" = "y3", min = 0, init = 9, max = 14.92, dsc1 = 0, dsc2 = 14.92),
num_ys = 5)
}
noise_paramsdf <- make_noiseeff_reparamdf(num_Nes = 5, min = 0.5, init = 1, max = 1.5)
# bring together
df_params <- rbind.data.frame(ifr_paramsdf, infxn_paramsdf, knot_paramsdf, sens_spec_tbl, noise_paramsdf, tod_paramsdf)
# make mod
mod1 <- COVIDCurve::make_IFRmodel_age$new()
mod1$set_MeanTODparam("mod")
mod1$set_CoefVarOnsetTODparam("sod")
mod1$set_IFRparams(paste0("ma", 1:5))
mod1$set_maxMa("ma5")
mod1$set_Knotparams(paste0("x", 1:4))
mod1$set_relKnot("x4")
mod1$set_Infxnparams(paste0("y", 1:5))
if (nm == "expgrowth") {
mod1$set_relInfxn("y5")
} else {
mod1$set_relInfxn("y3")
}
mod1$set_Noiseparams(c(paste0("Ne", 1:5)))
mod1$set_Serotestparams(c("sens", "spec", "sero_con_rate", "sero_rev_shape", "sero_rev_scale"))
mod1$set_data(inputdata)
mod1$set_demog(demog)
mod1$set_paramdf(df_params)
mod1$set_rcensor_day(.Machine$integer.max)
# out
mod1
}
map$modelobj <- purrr::pmap(map[,c("nm", "curve", "inputdata", "sens_spec_tbl", "demog")], wrap_make_IFR_model)
#......................
# names
#......................
fit_map <- map %>%
dplyr::mutate(sim = paste0("sim", 1:nrow(.))) %>%
dplyr::select(c("sim", "nm", dplyr::everything()))
#............................................................
# Come Together
#...........................................................
# save out full for later manips
dir.create("data/param_map/SimCurves_serorev/", recursive = TRUE)
saveRDS(fit_map, "data/param_map/SimCurves_serorev/simfit_param_map.RDS")
# select what we need for fits and make outpaths
fit_map_modelobj <- fit_map %>%
dplyr::select(c("sim", "modelobj"))
lapply(split(fit_map_modelobj, 1:nrow(fit_map_modelobj)), function(x){
saveRDS(x, paste0("data/param_map/SimCurves_serorev/",
x$sim, ".RDS"))
})
#............................................................
# MCMC Object
#...........................................................
run_MCMC <- function(path) {
# read in
mod <- readRDS(path)
# fit
fit <- COVIDCurve::run_IFRmodel_age(IFRmodel = mod$modelobj[[1]],
reparamIFR = TRUE,
reparamInfxn = TRUE,
reparamKnots = TRUE,
chains = 10,
burnin = 1e4,
samples = 1e4,
rungs = 50,
GTI_pow = 3.0,
thinning = 10)
# out
dir.create("results/SimCurves_serorev/", recursive = TRUE)
outpath = paste0("results/SimCurves_serorev/",
mod$sim, "_SeroRev.RDS")
saveRDS(fit, file = outpath)
return(0)
}
#............................................................
# Make Drake Plan
#...........................................................
# due to R6 classes being stored in environment https://github.com/ropensci/drake/issues/961
# Drake can't find <environment> in memory (obviously).
# Need to either wrap out of figure out how to nest better
# read files in after sleeping to account for file lag
Sys.sleep(60)
file_param_map <- list.files(path = "data/param_map/SimCurves_serorev/",
pattern = "*.RDS",
full.names = TRUE)
file_param_map <- tibble::tibble(path = file_param_map)
# remove non-fit items that are for carrying forward simulations
file_param_map <- file_param_map[!grepl("simfit_param_map.RDS", file_param_map$path),]
#............................................................
# Make Drake Plan
#...........................................................
plan <- drake::drake_plan(
fits = target(
run_MCMC(path),
transform = map(
.data = !!file_param_map
)
)
)
#......................
# call drake to send out to slurm
#......................
options(clustermq.scheduler = "slurm",
clustermq.template = "drake_clst/slurm_clustermq_LL.tmpl")
make(plan, parallelism = "clustermq",
jobs = nrow(file_param_map),
log_make = "SimCurves_serorev.log", verbose = 2,
log_progress = TRUE,
log_build_times = FALSE,
recoverable = FALSE,
history = FALSE,
session_info = FALSE,
lock_envir = FALSE, # unlock environment so parallel::clusterApplyLB in drjacoby can work
lock_cache = FALSE)
cat("************** Drake Finished **************************")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.