#' Runs an parallel tempering MCMC (drjacoby) on the specified model.
#' Adapted from squire::pmcmc, but handles the weekly death data from excess-mortality.
#' @inheritParams squire::pmcmc
#' @param drjacoby_list Parameters to use in drjacoby
#' @param n_burnin How many iterations to drop as burnin
#' @param primary_doses Time series of primary vaccine doses
#' @param baseline_primary_doses Primary doses a day at the start of the epidemic
#' @param booster_doses Time series of booster vaccine doses
#' @param baseline_booster_doses Booster doses a day at the start of the epidemic
#' @param date_vaccine_efficacy_change Dates at which VE changes
#' @param second_dose_delay Delay in days between first and second doses
#' @param protection_delay_rate Assuming vaccine protection is delayed by some gamma distribution, specify the rate
#' @param protection_delay_shape Assuming vaccine protection is delayed by some gamma distribution, specify the shape
#'@export
pmcmc_drjacoby <- function(data,
replicates = 100,
n_mcmc,
n_burnin,
date_vaccine_change,
primary_doses,
booster_doses,
n_chains = 1,
log_likelihood = NULL,
log_prior = NULL,
drjacoby_list = list(),
squire_model = nimue_booster_model(),
pars_obs = list(phi_cases = 1,
k_cases = 2,
phi_death = 1,
k_death = 2,
exp_noise = 1e6,
cases_fitting = TRUE,
cases_days = 21,
cases_reporting = 21,
variant_adjust = NULL),
pars_init = list('start_date' = as.Date("2020-02-07"),
'R0' = 2.5,
'Meff' = 2,
'Meff_pl' = 3),
pars_min = list('start_date' = as.Date("2020-02-01"),
'R0' = 0,
'Meff' = 1,
'Meff_pl' = 2),
pars_max = list('start_date' = as.Date("2020-02-20"),
'R0' = 5,
'Meff' = 3,
'Meff_pl' = 4),
pars_discrete = list('start_date' = TRUE,
'R0' = FALSE,
'Meff' = FALSE,
'Meff_pl' = FALSE),
country = NULL,
population = NULL,
contact_matrix_set = NULL,
baseline_contact_matrix = NULL,
date_contact_matrix_set_change = NULL,
R0_change = NULL,
date_R0_change = NULL,
hosp_bed_capacity = NULL,
baseline_hosp_bed_capacity = NULL,
date_hosp_bed_capacity_change = NULL,
ICU_bed_capacity = NULL,
baseline_ICU_bed_capacity = NULL,
date_ICU_bed_capacity_change = NULL,
baseline_primary_doses = 0,
baseline_booster_doses = 0,
baseline_vaccine_efficacy_infection = vaccine_pars_booster$vaccine_efficacy_infection,
vaccine_efficacy_infection = NULL,
baseline_vaccine_efficacy_disease = vaccine_pars_booster$vaccine_efficacy_disease,
vaccine_efficacy_disease = NULL,
date_vaccine_efficacy_change = NULL,
Rt_args = NULL,
second_dose_delay = 60,
protection_delay_rate = 1/7,
protection_delay_shape = 2,
...
) {
#------------------------------------------------------------
# Section 1 of pMCMC Wrapper: Checks & Setup
#------------------------------------------------------------
#--------------------
# assertions & checks
#--------------------
squire:::check_drjacoby_list(drjacoby_list)
# we work with pars_init being a list of inital conditions for starting
if(any(c("start_date", "R0") %in% names(pars_init))) {
pars_init <- list(pars_init)
}
# make it same length as chains, which allows us to pass in multiple starting points
if(length(pars_init) != n_chains) {
pars_init <- rep(pars_init, n_chains)
pars_init <- pars_init[seq_len(n_chains)]
}
# data assertions
squire:::assert_dataframe(data)
squire:::assert_in("date", names(data))
squire:::assert_in("deaths", names(data))
squire:::assert_date(data$date)
squire:::assert_increasing(as.numeric(as.Date(data$date)),
message = "Dates must be in increasing order")
# check input pars df
squire:::assert_list(pars_init)
squire:::assert_list(pars_init[[1]])
squire:::assert_list(pars_min)
squire:::assert_list(pars_max)
squire:::assert_list(pars_discrete)
squire:::assert_eq(names(pars_init[[1]]), names(pars_min))
squire:::assert_eq(names(pars_min), names(pars_max))
squire:::assert_eq(names(pars_max), names(pars_discrete))
squire:::assert_in(c("R0", "start_date"),names(pars_init[[1]]),
message = "Params to infer must include R0, start_date")
squire:::assert_date(pars_init[[1]]$start_date)
squire:::assert_date(pars_min$start_date)
squire:::assert_date(pars_max$start_date)
if (pars_max$start_date >= as.Date(data$date[1])-1) {
stop("Maximum start date must be at least 2 days before the first date in data")
}
# check date variables are as Date class
for(i in seq_along(pars_init)) {
pars_init[[i]]$start_date <- as.Date(pars_init[[i]]$start_date)
}
pars_min$start_date <- as.Date(pars_min$start_date)
pars_max$start_date <- as.Date(pars_max$start_date)
# check bounds
for(var in names(pars_init[[1]])) {
squire:::assert_bounded(as.numeric(pars_init[[1]][[var]]),
left = as.numeric(pars_min[[var]]),
right = as.numeric(pars_max[[var]]),
name = paste(var, "init"))
squire:::assert_single_numeric(as.numeric(pars_min[[var]]), name = paste(var, "min"))
squire:::assert_single_numeric(as.numeric(pars_max[[var]]), name = paste(var, "max"))
squire:::assert_single_numeric(as.numeric(pars_init[[1]][[var]]), name = paste(var, "init"))
}
# additonal checks that R0 is positive as undefined otherwise
squire:::assert_pos(pars_min$R0)
squire:::assert_pos(pars_max$R0)
squire:::assert_pos(pars_init[[1]]$R0)
squire:::assert_bounded(pars_init[[1]]$R0, left = pars_min$R0, right = pars_max$R0)
# check likelihood items
if ( !(is.null(log_likelihood) | inherits(log_likelihood, "function")) ) {
stop("Log Likelihood (log_likelihood) must be null or a user specified function")
}
if ( !(is.null(log_prior) | inherits(log_prior, "function")) ) {
stop("Log Likelihood (log_likelihood) must be null or a user specified function")
}
squire:::assert_logical(unlist(pars_discrete))
squire:::assert_list(pars_obs)
squire:::assert_in(c("phi_cases", "k_cases", "phi_death", "k_death", "exp_noise"), names(pars_obs))
squire:::assert_numeric(unlist(pars_obs[c("phi_cases", "k_cases", "phi_death", "k_death", "exp_noise")]))
# mcmc items
squire:::assert_pos_int(n_mcmc)
squire:::assert_pos_int(n_chains)
squire:::assert_int(n_burnin)
# squire and odin
squire:::assert_custom_class(squire_model, "squire_model")
squire:::assert_pos_int(replicates)
# date change items
squire:::assert_same_length(R0_change, date_R0_change)
# checks that dates are not in the future compared to our data
if (!is.null(date_R0_change)) {
squire:::assert_date(date_R0_change)
if(as.Date(utils::tail(date_R0_change,1)) > as.Date(utils::tail(data$date, 1))) {
stop("Last date in date_R0_change is greater than the last date in data")
}
}
# ------------------------------------
# checks on odin interacting variables
# ------------------------------------
if(!is.null(contact_matrix_set)) {
squire:::assert_list(contact_matrix_set)
}
squire:::assert_same_length(contact_matrix_set, date_contact_matrix_set_change)
squire:::assert_same_length(ICU_bed_capacity, date_ICU_bed_capacity_change)
squire:::assert_same_length(hosp_bed_capacity, date_hosp_bed_capacity_change)
squire:::assert_same_length(primary_doses, date_vaccine_change)
squire:::assert_same_length(booster_doses, date_vaccine_change)
squire:::assert_same_length(vaccine_efficacy_infection, date_vaccine_efficacy_change)
squire:::assert_same_length(vaccine_efficacy_disease, date_vaccine_efficacy_change)
# handle contact matrix changes
if(!is.null(date_contact_matrix_set_change)) {
squire:::assert_date(date_contact_matrix_set_change)
squire:::assert_list(contact_matrix_set)
if(is.null(baseline_contact_matrix)) {
stop("baseline_contact_matrix can't be NULL if date_contact_matrix_set_change is provided")
}
if(as.Date(utils::tail(date_contact_matrix_set_change,1)) > as.Date(utils::tail(data$date, 1))) {
stop("Last date in date_contact_matrix_set_change is greater than the last date in data")
}
# Get in correct format
if(is.matrix(baseline_contact_matrix)) {
baseline_contact_matrix <- list(baseline_contact_matrix)
}
tt_contact_matrix <- c(0, seq_len(length(date_contact_matrix_set_change)))
contact_matrix_set <- append(baseline_contact_matrix, contact_matrix_set)
} else {
tt_contact_matrix <- 0
contact_matrix_set <- baseline_contact_matrix
}
# handle ICU changes
if(!is.null(date_ICU_bed_capacity_change)) {
squire:::assert_date(date_ICU_bed_capacity_change)
squire:::assert_vector(ICU_bed_capacity)
squire:::assert_numeric(ICU_bed_capacity)
if(is.null(baseline_ICU_bed_capacity)) {
stop("baseline_ICU_bed_capacity can't be NULL if date_ICU_bed_capacity_change is provided")
}
squire:::assert_numeric(baseline_ICU_bed_capacity)
if(as.Date(utils::tail(date_ICU_bed_capacity_change,1)) > as.Date(utils::tail(data$date, 1))) {
stop("Last date in date_ICU_bed_capacity_change is greater than the last date in data")
}
tt_ICU_beds <- c(0, seq_len(length(date_ICU_bed_capacity_change)))
ICU_bed_capacity <- c(baseline_ICU_bed_capacity, ICU_bed_capacity)
} else {
tt_ICU_beds <- 0
ICU_bed_capacity <- baseline_ICU_bed_capacity
}
# handle vaccine changes
if(!is.null(date_vaccine_change)) {
squire:::assert_date(date_vaccine_change)
squire:::assert_vector(primary_doses)
squire:::assert_numeric(primary_doses)
squire:::assert_numeric(baseline_primary_doses)
if(is.null(baseline_primary_doses)) {
stop("baseline_primary_doses can't be NULL if date_vaccine_change is provided")
}
if(as.Date(utils::tail(date_vaccine_change,1)) > as.Date(utils::tail(data$date, 1))) {
stop("Last date in date_vaccine_change is greater than the last date in data")
}
tt_primary_doses <- c(0, seq_len(length(date_vaccine_change)))
primary_doses <- c(baseline_primary_doses, primary_doses)
tt_booster_doses <- tt_primary_doses
booster_doses <- c(baseline_booster_doses, booster_doses)
} else {
tt_vaccine <- 0
if(!is.null(baseline_primary_doses)) {
primary_doses <- baseline_primary_doses
} else {
primary_doses <- 0
}
if(!is.null(baseline_booster_doses)) {
booster_doses <- baseline_booster_doses
} else {
booster_doses <- 0
}
}
# handle vaccine efficacy disease changes
if(!is.null(date_vaccine_efficacy_change)) {
squire:::assert_date(date_vaccine_efficacy_change)
if(!is.list(vaccine_efficacy_infection)) {
vaccine_efficacy_infection <- list(vaccine_efficacy_infection)
}
squire:::assert_vector(vaccine_efficacy_infection[[1]])
squire:::assert_numeric(vaccine_efficacy_infection[[1]])
squire:::assert_numeric(baseline_vaccine_efficacy_infection)
if(is.null(baseline_vaccine_efficacy_infection)) {
stop("baseline_vaccine_efficacy_infection can't be NULL if date_vaccine_efficacy_change is provided")
}
if(as.Date(utils::tail(date_vaccine_efficacy_change,1)) > as.Date(utils::tail(data$date, 1))) {
stop("Last date in date_vaccine_efficacy_change is greater than the last date in data")
}
tt_vaccine_efficacy_infection <- c(0, seq_len(length(date_vaccine_efficacy_change)))
vaccine_efficacy_infection <- c(list(baseline_vaccine_efficacy_infection), vaccine_efficacy_infection)
} else {
tt_vaccine_efficacy_infection <- 0
if(!is.null(baseline_vaccine_efficacy_infection)) {
vaccine_efficacy_infection <- baseline_vaccine_efficacy_infection
} else {
vaccine_efficacy_infection <- rep(0.8, 17)
}
}
# handle vaccine efficacy disease changes
if(!is.null(date_vaccine_efficacy_change)) {
squire:::assert_date(date_vaccine_efficacy_change)
if(!is.list(vaccine_efficacy_disease)) {
vaccine_efficacy_disease <- list(vaccine_efficacy_disease)
}
squire:::assert_vector(vaccine_efficacy_disease[[1]])
squire:::assert_numeric(vaccine_efficacy_disease[[1]])
squire:::assert_numeric(baseline_vaccine_efficacy_disease)
if(is.null(baseline_vaccine_efficacy_disease)) {
stop("baseline_vaccine_efficacy_disease can't be NULL if date_vaccine_efficacy_change is provided")
}
if(as.Date(utils::tail(date_vaccine_efficacy_change,1)) > as.Date(utils::tail(data$date, 1))) {
stop("Last date in date_vaccine_efficacy_change is greater than the last date in data")
}
tt_vaccine_efficacy_disease <- c(0, seq_len(length(date_vaccine_efficacy_change)))
vaccine_efficacy_disease <- c(list(baseline_vaccine_efficacy_disease), vaccine_efficacy_disease)
} else {
tt_vaccine_efficacy_disease <- 0
if(!is.null(baseline_vaccine_efficacy_disease)) {
vaccine_efficacy_disease <- baseline_vaccine_efficacy_disease
} else {
vaccine_efficacy_disease <- rep(0.95, 17)
}
}
# handle hosp bed changed
if(!is.null(date_hosp_bed_capacity_change)) {
squire:::assert_date(date_hosp_bed_capacity_change)
squire:::assert_vector(hosp_bed_capacity)
squire:::assert_numeric(hosp_bed_capacity)
if(is.null(baseline_hosp_bed_capacity)) {
stop("baseline_hosp_bed_capacity can't be NULL if date_hosp_bed_capacity_change is provided")
}
squire:::assert_numeric(baseline_hosp_bed_capacity)
if(as.Date(utils::tail(date_hosp_bed_capacity_change,1)) > as.Date(utils::tail(data$date, 1))) {
stop("Last date in date_hosp_bed_capacity_change is greater than the last date in data")
}
tt_hosp_beds <- c(0, seq_len(length(date_hosp_bed_capacity_change)))
hosp_bed_capacity <- c(baseline_hosp_bed_capacity, hosp_bed_capacity)
} else {
tt_hosp_beds <- 0
hosp_bed_capacity <- baseline_hosp_bed_capacity
}
#----------------
# Generate Odin items
#----------------
# make the date definitely a date
data$date <- as.Date(as.character(data$date))
# build model parameters
model_params <- squire_model$parameter_func(
country = country,
population = population,
dt = 1,
contact_matrix_set = contact_matrix_set,
tt_contact_matrix = tt_contact_matrix,
hosp_bed_capacity = hosp_bed_capacity,
tt_hosp_beds = tt_hosp_beds,
ICU_bed_capacity = ICU_bed_capacity,
tt_ICU_beds = tt_ICU_beds,
primary_doses = primary_doses,
tt_primary_doses = tt_primary_doses,
booster_doses = booster_doses,
tt_booster_doses = tt_booster_doses,
vaccine_efficacy_infection = vaccine_efficacy_infection,
tt_vaccine_efficacy_infection = tt_vaccine_efficacy_infection,
vaccine_efficacy_disease = vaccine_efficacy_disease,
tt_vaccine_efficacy_disease = tt_vaccine_efficacy_disease,
protection_delay_rate = NULL,
protection_delay_shape = NULL,
protection_delay_time = NULL,
...)
# collect interventions for odin model likelihood
interventions <- list(
R0_change = R0_change,
date_R0_change = date_R0_change,
date_contact_matrix_set_change = date_contact_matrix_set_change,
contact_matrix_set = contact_matrix_set,
date_ICU_bed_capacity_change = date_ICU_bed_capacity_change,
ICU_bed_capacity = ICU_bed_capacity,
date_hosp_bed_capacity_change = date_hosp_bed_capacity_change,
hosp_bed_capacity = hosp_bed_capacity,
date_vaccine_change = date_vaccine_change,
primary_doses = primary_doses,
booster_doses = booster_doses,
date_vaccine_efficacy_change = date_vaccine_efficacy_change,
vaccine_efficacy_disease = vaccine_efficacy_disease,
date_vaccine_efficacy_change = date_vaccine_efficacy_change,
vaccine_efficacy_infection = vaccine_efficacy_infection,
protection_delay_rate = protection_delay_rate,
protection_delay_shape = protection_delay_shape,
second_dose_delay = second_dose_delay
)
#----------------..
# Collect Odin and MCMC Inputs
#----------------..
inputs <- list(
data = data,
n_mcmc = n_mcmc,
model_params = model_params,
interventions = interventions,
pars_obs = pars_obs,
Rt_args = Rt_args,
squire_model = squire_model,
pars = list(pars_obs = pars_obs,
pars_init = pars_init,
pars_min = pars_min,
pars_max = pars_max,
pars_discrete = pars_discrete))
#----------------
# create prior and likelihood functions given the inputs
#----------------
if(is.null(log_prior)) {
# set improper, uninformative prior
log_prior <- function(params, misc) log(1e-10)
}
calc_lprior <- log_prior
squire:::check_drjacoby_logprior(calc_lprior)
if(is.null(log_likelihood)) {
log_likelihood <- squire:::calc_loglikelihood_drjacoby()
}
calc_ll <- log_likelihood
squire:::check_drjacoby_loglike(calc_ll)
#----------------
# set run_mcmc_func here to out drjacoby one
#----------------
run_mcmc_func <- squire:::run_drjacoby_mcmc
# needs to be a vector to pass to reflecting boundary function
pars_min <- unlist(pars_min)
pars_max <- unlist(pars_max)
pars_discrete <- unlist(pars_discrete)
#--------------------------------------------------------
# Section 2 of pMCMC Wrapper: Run pMCMC
#--------------------------------------------------------
# Are we debuggine
if (Sys.getenv("SQUIRE_PARALLEL_DEBUG") == "TRUE") {
# if debug remove the cluster
drjacoby_list$cl <- NULL
}
# run drjacoby
message("Running drjacoby...")
mcmc_out <- squire:::run_drjacoby_mcmc(loglike = calc_ll,
logprior = calc_lprior,
inputs = inputs,
burnin = n_burnin,
chains = n_chains,
drjacoby_list = drjacoby_list)
# process output to play with rest of squire
chains <- squire:::convert_drjacoby_mcmc(mcmc_out)
if(n_chains > 1) {
pmcmc <- list(inputs = inputs,
chains = chains,
drjacoby_out = mcmc_out)
pmcmc$inputs$n_mcmc <- n_mcmc
class(pmcmc) <- 'squire_pmcmc_list'
} else {
pmcmc <- chains$chain1
pmcmc$inputs <- inputs
pmcmc$drjacoby_out <- mcmc_out
class(pmcmc) <- 'squire_pmcmc'
}
#--------------------------------------------------------
# Section 3 of pMCMC Wrapper: Sample PMCMC Results
#--------------------------------------------------------
pmcmc_samples <- squire::sample_drjacoby(pmcmc_results = pmcmc,
burnin = n_burnin,
n_chains = n_chains,
n_trajectories = replicates,
log_likelihood = log_likelihood,
forecast_days = 0)
#--------------------------------------------------------
# Section 4 of pMCMC Wrapper: Tidy Output
#--------------------------------------------------------
#----------------
# Pull Sampled results and "recreate" squire models
#----------------
# create a fake run object and fill in the required elements
r <- squire_model$run_func(country = country,
contact_matrix_set = contact_matrix_set,
tt_contact_matrix = tt_contact_matrix,
hosp_bed_capacity = hosp_bed_capacity,
tt_hosp_beds = tt_hosp_beds,
ICU_bed_capacity = ICU_bed_capacity,
tt_ICU_beds = tt_ICU_beds,
primary_doses = primary_doses,
tt_primary_doses = tt_primary_doses,
booster_doses = booster_doses,
tt_booster_doses = tt_booster_doses,
vaccine_efficacy_infection = vaccine_efficacy_infection,
tt_vaccine_efficacy_infection = tt_vaccine_efficacy_infection,
vaccine_efficacy_disease = vaccine_efficacy_disease,
tt_vaccine_efficacy_disease = tt_vaccine_efficacy_disease,
population = population,
replicates = 1,
day_return = TRUE,
time_period = nrow(pmcmc_samples$trajectories),
...)
# and add the parameters that changed between each simulation, i.e. posterior draws
r$replicate_parameters <- pmcmc_samples$sampled_PMCMC_Results
# as well as adding the pmcmc chains so it's easy to draw from the chains again in the future
r$pmcmc_results <- pmcmc
# then let's create the output that we are going to use
names(pmcmc_samples)[names(pmcmc_samples) == "trajectories"] <- "output"
dimnames(pmcmc_samples$output) <- list(dimnames(pmcmc_samples$output)[[1]], dimnames(r$output)[[2]], NULL)
r$output <- pmcmc_samples$output
# and adjust the time as before
full_row <- match(0, apply(r$output[,"time",],2,function(x) { sum(is.na(x)) }))
saved_full <- r$output[,"time",full_row]
for(i in seq_len(replicates)) {
na_pos <- which(is.na(r$output[,"time",i]))
full_to_place <- saved_full - which(rownames(r$output) == as.Date(max(data$date))) + 1L
if(length(na_pos) > 0) {
full_to_place[na_pos] <- NA
}
r$output[,"time",i] <- full_to_place
}
# second let's recreate the output
r$model <- pmcmc_samples$inputs$squire_model$odin_model(
user = pmcmc_samples$inputs$model_params, unused_user_action = "ignore"
)
# we will add the interventions here so that we know what times are needed for projection
r$interventions <- interventions
# and fix the replicates
r$parameters$replicates <- replicates
r$parameters$time_period <- as.numeric(diff(as.Date(range(rownames(r$output)))))
r$parameters$dt <- model_params$dt
#--------------------..
# out
#--------------------..
return(r)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.