1 |
J |
|
K |
|
x |
|
est |
|
JK |
|
grp |
|
nboot |
|
SEED |
|
pr |
|
... |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (J, K, x, est = tmean, JK = J * K, grp = c(1:JK), nboot = 500,
SEED = TRUE, pr = TRUE, ...)
{
if (pr)
print("As of Oct. 2014, argument est defaults to tmean")
library(MASS)
if (is.matrix(x)) {
y <- list()
for (j in 1:ncol(x)) y[[j]] <- x[, j]
x <- y
}
JK <- J * K
MJ <- (J^2 - J)/2
MK <- (K^2 - K)/2
JMK <- J * MK
Jm <- J - 1
data <- list()
for (j in 1:length(x)) {
data[[j]] <- x[[grp[j]]]
}
x <- data
jp <- 1 - K
kv <- 0
kv2 <- 0
for (j in 1:J) {
jp <- jp + K
xmat <- matrix(NA, ncol = K, nrow = length(x[[jp]]))
for (k in 1:K) {
kv <- kv + 1
xmat[, k] <- x[[kv]]
}
xmat <- elimna(xmat)
for (k in 1:K) {
kv2 <- kv2 + 1
x[[kv2]] <- xmat[, k]
}
}
xx <- x
if (SEED)
set.seed(2)
nvec <- NA
jp <- 1 - K
for (j in 1:J) {
jp <- jp + K
nvec[j] <- length(x[[jp]])
}
bloc <- matrix(NA, ncol = J, nrow = nboot)
print("Taking bootstrap samples. Please wait.")
mvec <- NA
it <- 0
for (j in 1:J) {
paste("Working on level ", j, " of Factor A")
x <- matrix(NA, nrow = nvec[j], ncol = MK)
im <- 0
for (k in 1:K) {
for (kk in 1:K) {
if (k < kk) {
im <- im + 1
kp <- j * K + k - K
kpp <- j * K + kk - K
x[, im] <- xx[[kp]] - xx[[kpp]]
it <- it + 1
mvec[it] <- est(x[, im], ...)
}
}
}
data <- matrix(sample(nvec[j], size = nvec[j] * nboot,
replace = TRUE), nrow = nboot)
bvec <- matrix(NA, ncol = MK, nrow = nboot)
mat <- listm(x)
for (k in 1:MK) {
temp <- x[, k]
bvec[, k] <- apply(data, 1, rmanogsub, temp, est,
...)
}
if (j == 1)
bloc <- bvec
if (j > 1)
bloc <- cbind(bloc, bvec)
}
MJMK <- MJ * MK
con <- matrix(0, nrow = JMK, ncol = MJMK)
cont <- matrix(0, nrow = J, ncol = MJ)
ic <- 0
for (j in 1:J) {
for (jj in 1:J) {
if (j < jj) {
ic <- ic + 1
cont[j, ic] <- 1
cont[jj, ic] <- 0 - 1
}
}
}
tempv <- matrix(0, nrow = MK - 1, ncol = MJ)
con1 <- rbind(cont[1, ], tempv)
for (j in 2:J) {
con2 <- rbind(cont[j, ], tempv)
con1 <- rbind(con1, con2)
}
con <- con1
if (MK > 1) {
for (k in 2:MK) {
con1 <- push(con1)
con <- cbind(con, con1)
}
}
bcon <- t(con) %*% t(bloc)
tvec <- t(con) %*% mvec
tvec <- tvec[, 1]
tempcen <- apply(bcon, 1, mean)
vecz <- rep(0, ncol(con))
bcon <- t(bcon)
temp = bcon
for (ib in 1:nrow(temp)) temp[ib, ] = temp[ib, ] - tempcen +
tvec
smat <- var(temp)
if (sum(is.na(smat)) == 0) {
chkrank <- qr(smat)$rank
bcon <- rbind(bcon, vecz)
if (chkrank == ncol(smat))
dv <- mahalanobis(bcon, tvec, smat)
if (chkrank < ncol(smat)) {
smat <- ginv(smat)
dv <- mahalanobis(bcon, tvec, smat, inverted = T)
}
}
if (sum(is.na(smat)) > 0)
print("Computational Problem. Try est=tmean or use function spmcpi or tsplitbt")
bplus <- nboot + 1
sig.level <- 1 - sum(dv[bplus] >= dv[1:nboot])/nboot
list(p.value = sig.level, psihat = tvec, con = con)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.