sub_daarem_lasso_binomial <- function(par, X, y, lambda, stplngth, nlag, a1, kappa, maxiter, tol, mon.tol, cycl.mon.tol, sub.size) {
num.params <- ncol(X)
lasso.pen <- lambda
Fdiff <- Xdiff <- matrix(0.0, nrow=num.params, ncol=nlag)
obj_funvals <- rep(NA, maxiter + 2)
Xty <- crossprod(X, y)
xold <- par
phat <- expit(X%*%xold)
xnew <- SoftThresh(xold + stplngth*(Xty - crossprod(X, phat)), lambda=lambda*stplngth)
obj_funvals[1] <- LogisticObjFn(xold, X, Xty, lasso.pen)
obj_funvals[2] <- LogisticObjFn(xnew, X, Xty, lasso.pen)
likchg <- obj_funvals[2] - obj_funvals[1]
obj.evals <- 2
fold <- xnew - xold
k <- 1
count <- 0
shrink.count <- 0
shrink.target <- 1/(1 + a1^kappa)
lambda.ridge <- 100000
r.penalty <- 0
conv <- TRUE
num.em <- 0 ## number of EM fallbacks
ell.star <- obj_funvals[2]
while(k < maxiter) {
count <- count + 1
rr <- y - expit(X%*%xnew) ## residuals
fnew <- SoftThresh(xnew + stplngth*crossprod(X, rr), lambda=lambda*stplngth) - xnew
ss.resids <- sqrt(crossprod(fnew))
Fdiff[,count] <- fnew - fold
Xdiff[,count] <- xnew - xold
if(ss.resids < tol & count==nlag) break
np <- count
if(sub.size < num.params) {
ind <- sample(1:num.params, size=sub.size)
}
Ftmp <- matrix(Fdiff[ind,1:np], nrow=length(ind), ncol=np)
Xtmp <- matrix(Xdiff[ind,1:np], nrow=length(ind), ncol=np)
fnew.tmp <- fnew[ind]
Ftmp.full <- matrix(Fdiff[,1:np], nrow=length(fnew), ncol=np)
Xtmp.full <- matrix(Xdiff[,1:np], nrow=length(fnew), ncol=np)
tmp <- svd(Ftmp)
dvec <- tmp$d
uy <- crossprod(tmp$u, fnew.tmp)
uy.sq <- uy*uy
max.d <- max(tmp$d)
min.d <- min(tmp$d)
cond.number <- ifelse(max.d==min.d, 1, max.d/min.d) ## to take care of cases where max.d=min.d=0
if(cond.number > 1e10) {
print('hello')
shrink.count <- shrink.count - 2
}
### Still need to compute Ftf
Ftf <- sqrt(sum(as.vector(crossprod(Ftmp, fnew.tmp))^2))
tmp_lam <- DampingFind(uy.sq, dvec, a1, kappa, shrink.count, Ftf, lambda.start=lambda.ridge, r.start=r.penalty)
lambda.ridge <- tmp_lam$lambda
r.penalty <- tmp_lam$rr
dd <- (dvec*uy)/(dvec^2 + lambda.ridge)
gamma_vec <- tmp$v%*%dd
if(class(gamma_vec) != "try-error"){
xbar <- xnew - drop(Xtmp.full%*%gamma_vec)
fbar <- fnew - drop(Ftmp.full%*%gamma_vec)
x.propose <- xbar + fbar
new.objective.val <- try(LogisticObjFn(x.propose, X, Xty, lasso.pen), silent=TRUE)
obj.evals <- obj.evals + 1
if(class(new.objective.val) != "try-error" & !is.na(obj_funvals[k+1]) &
!is.nan(new.objective.val)) {
if(new.objective.val >= obj_funvals[k+1] - mon.tol) {
## Increase delta
obj_funvals[k+2] <- new.objective.val
fold <- fnew
xold <- xnew
xnew <- x.propose
shrink.count <- shrink.count + 1
} else {
## Keep delta the same
fold <- fnew
xold <- xnew
xnew <- fold + xold
### Do we need to re-compute everything if we fall back?
obj_funvals[k+2] <- LogisticObjFn(xnew, X, Xty, lasso.pen)
obj.evals <- obj.evals + 1
#num.em <- num.em + 1
}
} else {
## Keep delta the same
fold <- fnew
xold <- xnew
xnew <- fold + xold
obj_funvals[k+2] <- LogisticObjFn(xnew, X, Xty, lasso.pen) ### need to add ngtp here?
obj.evals <- obj.evals + 1
count <- 0
#num.em <- num.em + 1
}
} else {
## Keep delta the same
fold <- fnew
xold <- xnew
xnew <- fold + xold
obj_funvals[k+2] <- LogisticObjFn(xnew, X, Xty, lasso.pen)
obj.evals <- obj.evals + 1
count <- 0
#num.em <- num.em + 1
}
if(count==nlag) {
count <- 0
## restart count
## make comparison here l.star vs. obj_funvals[k+2]
if(obj_funvals[k+2] < ell.star - cycl.mon.tol) {
## Decrease delta
shrink.count <- max(shrink.count - nlag, -2*kappa)
}
ell.star <- obj_funvals[k+2]
}
shrink.target <- 1/(1 + a1^(kappa - shrink.count))
k <- k+1
}
obj_funvals <- obj_funvals[!is.na(obj_funvals)]
value.obj <- LogisticObjFn(xnew, X, Xty, lasso.pen)
if(k >= maxiter) {
conv <- FALSE
warning("Algorithm did not converge")
}
return(list(par=c(xnew), fpevals = k, value.objfn=value.obj, objfevals=obj.evals,
convergence=conv, objfn.track=obj_funvals, stplngth=stplngth))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.