R/sub_daarem_lasso_gaussian_pgtn.R

Defines functions sub_daarem_lasso_gaussian_pgtn

sub_daarem_lasso_gaussian_pgtn <- function(par, X, y, lambda, stplngth, nlag, a1, kappa, 
                                           maxiter, tol, mtol, cycl.mon.tol, sub.size, sub.type) {

    num.params <- ncol(X)
    lasso.pen <- lambda
    Fdiff <- Xdiff <- matrix(0.0, nrow=num.params, ncol=nlag)
    obj_funvals <- rep(NA, maxiter + 2)

    yty <- sum(y*y)
    Xty <- crossprod(X, y)
    
    xold <- par
    xnew <- SoftThresh(xold + stplngth*(Xty - crossprod(X, X%*%xold)), lambda=lambda*stplngth)
    obj_funvals[1] <- LassoObjFn_pgtn(xold, X, Xty, yty, lasso.pen)
    obj_funvals[2] <- LassoObjFn_pgtn(xnew, X, Xty, yty, lasso.pen)
    
    likchg <- obj_funvals[2] - obj_funvals[1]
    obj.evals <- 2

    fold <- xnew - xold
    k <- 1
    count <- 0
    shrink.count <- 0
    shrink.target <- 1/(1 + a1^kappa)
  
    lambda.ridge <- 100000
    r.penalty <- 0
    conv <- TRUE
    num.em <- 0  ## number of EM fallbacks
    ell.star <- obj_funvals[2]
    possible.index <- 1:num.params
    x.aa <- f.aa <- double(num.params)
    ind <- 1:num.params
    if(length(mtol)==2) {
      mon.tol <- mtol[1]
    } else if(length(mtol)==1) {
      mon.tol <- mtol
    }
    while(k < maxiter) {
        count <- count + 1

        fnew <- SoftThresh(xnew + stplngth*(Xty - crossprod(X,X%*%xnew)), lambda=lambda*stplngth) - xnew
        ss.resids <- sqrt(crossprod(fnew))
        
        if(ss.resids < tol & count==nlag) break

        np <- count
        if (count==1 & k > 1 & sub.type=="threshold"){
             x.aa <- f.aa <- double(num.params)
             ff.abs <- rowSums(abs(Fdiff))
             xx.abs <- rowSums(abs(Xdiff))
             ind1 <- which( ff.abs > .001*mean(ff.abs))
             ind2 <- which( xx.abs > .001*mean(xx.abs))
             ind <- union(ind1, ind2)
        } else if (count==1 & k > 20 & sub.type=="betas") {
             x.aa <- f.aa <- double(num.params)
             b.abs <- abs(fnew + xnew)
             ind <- which(b.abs > .01*mean(b.abs))
        }
        Fdiff[,count] <- fnew - fold
        Xdiff[,count] <- xnew - xold
      
        Ftmp <- matrix(Fdiff[ind,1:np], nrow=length(ind), ncol=np)
        Xtmp <- matrix(Xdiff[ind,1:np], nrow=length(ind), ncol=np)
        fnew.tmp <- fnew[ind]
     
        tmp <- La.svd(Ftmp)
        dvec <- tmp$d
        uy <- crossprod(tmp$u, fnew.tmp)
        uy.sq <- uy*uy

        max.d <- max(tmp$d)
        min.d <- min(tmp$d)
        cond.number <- ifelse(max.d==min.d, 1, max.d/min.d)  ## to take care of cases where max.d=min.d=0
        if(cond.number > 1e10) {
            shrink.count <- shrink.count - 2
        }

        ### Still need to compute Ftf
        Ftf <- sqrt(sum(as.vector(crossprod(Ftmp, fnew.tmp))^2))
        tmp_lam <- DampingFind(uy.sq, dvec, a1, kappa, shrink.count, Ftf, lambda.start=lambda.ridge, r.start=r.penalty)
        lambda.ridge <- tmp_lam$lambda
        r.penalty <- tmp_lam$rr

        dd <- (dvec*uy)/(dvec^2 + lambda.ridge)
        gamma_vec <- crossprod(tmp$vt, dd)

        x.aa[ind] <- Xtmp%*%gamma_vec
        f.aa[ind] <- Ftmp%*%gamma_vec

        xbar <- xnew - x.aa
        fbar <- fnew - f.aa

        x.propose <- xbar + fbar
        new.objective.val <- try(LassoObjFn_pgtn(x.propose, X, Xty, yty, lasso.pen), silent=TRUE)
        obj.evals <- obj.evals + 1

        if(class(new.objective.val) != "try-error" & !is.na(obj_funvals[k+1]) &
           !is.nan(new.objective.val)) {
              if(new.objective.val >= obj_funvals[k+1] - mon.tol) {
                ## Increase delta
                  obj_funvals[k+2] <- new.objective.val
                  fold <- fnew
                  xold <- xnew
                  xnew <- x.propose
                  shrink.count <- shrink.count + 1
              } else {
                 ## Keep delta the same
                  fold <- fnew
                  xold <- xnew
                  xnew <- fold + xold
                    
                  ### Do we need to re-compute everything if we fall back?
                  obj_funvals[k+2] <- LassoObjFn_pgtn(xnew, X, Xty, yty, lasso.pen)
                  obj.evals <- obj.evals + 1
                    #num.em <- num.em + 1
              }
         } else {
              ## Keep delta the same
              fold <- fnew
              xold <- xnew
              xnew <- fold + xold

              obj_funvals[k+2] <- LassoObjFn_pgtn(xnew, X, Xty, yty, lasso.pen)  ### need to add ngtp here?
              obj.evals <- obj.evals + 1
              count <- 0
                 #num.em <- num.em + 1
        }
        if(count==nlag) {
            count <- 0
            ## restart count
            ## make comparison here l.star vs. obj_funvals[k+2]
            if(obj_funvals[k+2] < ell.star - cycl.mon.tol) {
                ## Decrease delta
               shrink.count <- max(shrink.count - nlag, -2*kappa)
            }
            ell.star <- obj_funvals[k+2]
            if(length(mtol)==2) {
              mon.tol= ifelse(mon.tol==mtol[1], mtol[2], mtol[1])
            } 
        }
        shrink.target <-  1/(1 + a1^(kappa - shrink.count))
        k <- k+1
    }
    obj_funvals <- obj_funvals[!is.na(obj_funvals)]
    value.obj <- LassoObjFn_pgtn(xnew, X, Xty, yty, lasso.pen)

    if(k >= maxiter) {
        conv <- FALSE
        warning("Algorithm did not converge")
    }
    return(list(par=c(xnew), fpevals = k, value.objfn=value.obj, objfevals=obj.evals, 
                convergence=conv, objfn.track=obj_funvals, stplngth=stplngth))
}
nchenderson/nidaarem documentation built on Feb. 19, 2020, 12:45 p.m.