test_that("add_evidence works", {
phenos <- load_phenotype_to_genes()
phenos2 <- add_evidence(phenos = phenos,
default_score = NULL)
testthat::expect_true(
all(c("evidence_score_min",
"evidence_score_max",
"evidence_score_mean") %in% names(phenos2))
)
#### Plot number of genes/phenotypes/diseases at each evidence level ####
# rep <- lapply(c(NA,seq(0,6)), function(x){
# vars <- c("evidence_score_min","evidence_score_max","evidence_score_mean")
# lapply(stats::setNames(vars,vars),
# function(v){
# p <- if(is.na(x)){
# phenos2
# } else {
# phenos2[get(v)>=x,]
# }
# data.table::data.table(
# evidence_score_filter=toString(x),
# rows=nrow(p),
# diseases=length(unique(p$disease_id)),
# phenotypes=length(unique(p$hpo_id)),
# genes=length(unique(p$Gene))
# )
# }) |> data.table::rbindlist(use.names = TRUE,
# idcol = "evidence_score_variable")
# }) |> data.table::rbindlist()
#
# rep_melt <- data.table::melt.data.table(
# rep,
# measure.vars = names(rep)[-seq(2)],
# variable.name = "metric",
# value.name = "count")
# rep_melt$evidence_score_filter <- factor(rep_melt$evidence_score_filter,
# levels = unique(rep_melt$evidence_score_filter),
# ordered = TRUE)
# ggplot2::ggplot(rep_melt,
# ggplot2::aes(x=evidence_score_filter,
# y=count,
# shape=evidence_score_variable,
# color=evidence_score_variable)) +
# ggplot2::geom_smooth(se = FALSE, na.rm = FALSE) +
# ggplot2::geom_point(size=3, alpha=.8, na.rm = FALSE) +
# ggplot2::facet_wrap(facets = metric~.,
# scales = "free") +
# ggplot2::theme_bw()
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.