tests/testthat/test-families.R

context("Tests for family functions")

test_that("distributions work correctly", {
  fam <- tweedie()
  expect_true(inherits(fam, 'family'))
  expect_true(inherits(fam, 'extended.family'))
  expect_true(fam$link == 'log')

  fam <- student_t()
  expect_true(inherits(fam, 'family'))
  expect_true(inherits(fam, 'extended.family'))
  expect_true(fam$link == 'identity')

  fam <- nmix()
  expect_true(inherits(fam, 'family'))
  expect_true(inherits(fam, 'extended.family'))
  expect_true(fam$link == 'log')
})

test_that("nmix predictions work correctly", {
  set.seed(1)
  Xp <- matrix(rnorm(100), ncol = 10, nrow = 10)
  attr(Xp, 'model.offset') <- 0
  family <- 'nmix'
  betas <- rnorm(10)
  latent_lambdas <- runif(10, 2, 5)
  cap <- rep(12, 10)
  family_pars <- list()
  expect_true(all(
    mvgam:::mvgam_predict(
      Xp = Xp,
      family = family,
      betas = betas,
      latent_lambdas = latent_lambdas,
      cap = cap,
      type = 'link',
      family_pars = family_pars
    ) >
      0
  ))

  expect_true(all(
    mvgam:::mvgam_predict(
      Xp = Xp,
      family = family,
      betas = betas,
      latent_lambdas = latent_lambdas,
      cap = cap,
      type = 'expected',
      family_pars = family_pars
    ) >
      0
  ))

  detects <- mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = latent_lambdas,
    cap = cap,
    type = 'detection',
    family_pars = family_pars
  )
  expect_true(all(detects > 0) & all(detects < 1))

  truth <- rpois(10, 6)
  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = latent_lambdas,
    cap = cap,
    type = 'link',
    density = TRUE,
    truth = truth,
    family_pars = family_pars
  ))

  # Test that the residual calculation is working
  preds <- runif(10, 0.1, 10)
  N <- rpois(10, 20)
  p <- runif(10, 0.3, 0.6)
  resids <- mvgam:::ds_resids_nmix(
    truth = truth,
    fitted = 1,
    draw = 1,
    N = as.vector(N),
    p = as.vector(p)
  )
  expect_true(all(!is.na(resids)))
})

test_that("beta predictions work correctly", {
  set.seed(1)
  Xp <- matrix(rnorm(100), ncol = 10, nrow = 10)
  attr(Xp, 'model.offset') <- 0
  family <- 'beta'
  betas <- rnorm(10)
  family_pars <- list(phi = rep(1, 10))
  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'link',
    family_pars = family_pars
  ))

  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'variance',
    family_pars = family_pars
  ))
  expecteds <- mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'expected',
    family_pars = family_pars
  )

  expect_true(all(expecteds >= 0) & all(expecteds <= 1))

  preds <- mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'response',
    family_pars = family_pars
  )
  expect_true(all(preds >= 0) & all(preds <= 1))

  truth <- runif(10, 0.01, 0.99)
  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'link',
    density = TRUE,
    truth = truth,
    family_pars = family_pars
  ))

  preds <- runif(10, 0.01, 0.99)
  resids <- mvgam:::ds_resids_beta(
    truth = truth,
    fitted = as.vector(preds),
    draw = 1,
    precision = rep(1, 10)
  )
  expect_true(all(!is.na(resids)))
})

test_that("beta-binomial predictions work correctly", {
  set.seed(1)
  Xp <- matrix(rnorm(100), ncol = 10, nrow = 10)
  attr(Xp, 'model.offset') <- 0
  family <- 'beta_binomial'
  betas <- rnorm(10)
  family_pars <- list(phi = rep(1, 10), trials = rep(20, 10))
  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'link',
    family_pars = family_pars
  ))

  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'variance',
    family_pars = family_pars
  ))

  expect_true(all(
    mvgam:::mvgam_predict(
      Xp = Xp,
      family = family,
      betas = betas,
      latent_lambdas = NULL,
      cap = NULL,
      type = 'expected',
      family_pars = family_pars
    ) >
      0
  ))

  expect_true(all(
    mvgam:::mvgam_predict(
      Xp = Xp,
      family = family,
      betas = betas,
      latent_lambdas = NULL,
      cap = NULL,
      type = 'response',
      family_pars = family_pars
    ) >=
      0
  ))

  truth <- rpois(10, 8)
  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'link',
    density = TRUE,
    truth = truth,
    family_pars = family_pars
  ))

  p <- runif(10, 0.3, 0.6)
  resids <- mvgam:::ds_resids_beta_binomial(
    truth = truth,
    fitted = p,
    draw = 1,
    N = rep(20, 10),
    phi = rep(1, 10)
  )
  expect_true(all(!is.na(resids)))
})

test_that("negative binomial predictions work correctly", {
  set.seed(1)
  Xp <- matrix(rnorm(100), ncol = 10, nrow = 10)
  attr(Xp, 'model.offset') <- 0
  family <- 'negative binomial'
  betas <- rnorm(10)
  family_pars <- list(phi = rep(1, 10))
  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'link',
    family_pars = family_pars
  ))

  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'variance',
    family_pars = family_pars
  ))

  expect_true(all(
    mvgam:::mvgam_predict(
      Xp = Xp,
      family = family,
      betas = betas,
      latent_lambdas = NULL,
      cap = NULL,
      type = 'expected',
      family_pars = family_pars
    ) >
      0
  ))

  expect_true(all(
    mvgam:::mvgam_predict(
      Xp = Xp,
      family = family,
      betas = betas,
      latent_lambdas = NULL,
      cap = NULL,
      type = 'response',
      family_pars = family_pars
    ) >=
      0
  ))

  truth <- rpois(10, 8)
  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'link',
    density = TRUE,
    truth = truth,
    family_pars = family_pars
  ))

  preds <- rpois(10, 8)
  resids <- mvgam:::ds_resids_nb(
    truth = truth,
    fitted = preds,
    draw = 1,
    size = rep(1, 10)
  )
  expect_true(all(!is.na(resids)))
})

test_that("lognormal predictions work correctly", {
  set.seed(1)
  Xp <- matrix(rnorm(100), ncol = 10, nrow = 10)
  attr(Xp, 'model.offset') <- 0
  family <- 'lognormal'
  betas <- rnorm(10)
  family_pars <- list(sigma_obs = 1)
  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'link',
    family_pars = family_pars
  ))

  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'variance',
    family_pars = family_pars
  ))

  expect_true(all(
    mvgam:::mvgam_predict(
      Xp = Xp,
      family = family,
      betas = betas,
      latent_lambdas = NULL,
      cap = NULL,
      type = 'expected',
      family_pars = family_pars
    ) >
      0
  ))

  expect_true(all(
    mvgam:::mvgam_predict(
      Xp = Xp,
      family = family,
      betas = betas,
      latent_lambdas = NULL,
      cap = NULL,
      type = 'response',
      family_pars = family_pars
    ) >
      0
  ))

  truth <- runif(10, 0.1, 20)
  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'link',
    density = TRUE,
    truth = truth,
    family_pars = family_pars
  ))

  preds <- runif(10, 0.1, 20)
  resids <- mvgam:::ds_resids_lnorm(
    truth = truth,
    fitted = preds,
    draw = 1,
    sigma = rep(1, 10)
  )
  expect_true(all(!is.na(resids)))
})

test_that("gamma predictions work correctly", {
  set.seed(1)
  Xp <- matrix(rnorm(100), ncol = 10, nrow = 10)
  attr(Xp, 'model.offset') <- 0
  family <- 'Gamma'
  betas <- rnorm(10)
  family_pars <- list(shape = 1)
  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'link',
    family_pars = family_pars
  ))

  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'variance',
    family_pars = family_pars
  ))

  expect_true(all(
    mvgam:::mvgam_predict(
      Xp = Xp,
      family = family,
      betas = betas,
      latent_lambdas = NULL,
      cap = NULL,
      type = 'expected',
      family_pars = family_pars
    ) >
      0
  ))

  expect_true(all(
    mvgam:::mvgam_predict(
      Xp = Xp,
      family = family,
      betas = betas,
      latent_lambdas = NULL,
      cap = NULL,
      type = 'response',
      family_pars = family_pars
    ) >
      0
  ))

  truth <- runif(10, 0.1, 20)
  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'link',
    density = TRUE,
    truth = truth,
    family_pars = family_pars
  ))

  preds <- runif(10, 0.1, 20)
  resids <- mvgam:::ds_resids_gamma(
    truth = truth,
    fitted = preds,
    draw = 1,
    shape = rep(1, 10)
  )
  expect_true(all(!is.na(resids)))
})

test_that("student-t predictions work correctly", {
  set.seed(1)
  Xp <- matrix(rnorm(100), ncol = 10, nrow = 10)
  attr(Xp, 'model.offset') <- 0
  family <- 'student'
  betas <- rnorm(10)
  family_pars <- list(sigma_obs = 1, nu = 3)
  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'link',
    family_pars = family_pars
  ))

  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'variance',
    family_pars = family_pars
  ))

  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'expected',
    family_pars = family_pars
  ))

  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'response',
    family_pars = family_pars
  ))

  truth <- rnorm(10)
  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'link',
    density = TRUE,
    truth = truth,
    family_pars = family_pars
  ))

  preds <- rnorm(10)
  resids <- mvgam:::ds_resids_student(
    truth = truth,
    fitted = preds,
    draw = 1,
    sigma = rep(1, 10),
    nu = rep(5, 10)
  )
  expect_true(all(!is.na(resids)))
})

test_that("tweedie predictions work correctly", {
  set.seed(1)
  Xp <- matrix(rnorm(100), ncol = 10, nrow = 10)
  attr(Xp, 'model.offset') <- 0
  family <- 'tweedie'
  betas <- rnorm(10)
  family_pars <- list(phi = 1)
  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'link',
    family_pars = family_pars
  ))

  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'variance',
    family_pars = family_pars
  ))

  expect_no_error(all(
    mvgam:::mvgam_predict(
      Xp = Xp,
      family = family,
      betas = betas,
      latent_lambdas = NULL,
      cap = NULL,
      type = 'expected',
      family_pars = family_pars
    ) >
      0
  ))

  expect_no_error(all(
    mvgam:::mvgam_predict(
      Xp = Xp,
      family = family,
      betas = betas,
      latent_lambdas = NULL,
      cap = NULL,
      type = 'response',
      family_pars = family_pars
    ) >=
      0
  ))

  truth <- rpois(10, 5)
  expect_no_error(mvgam:::mvgam_predict(
    Xp = Xp,
    family = family,
    betas = betas,
    latent_lambdas = NULL,
    cap = NULL,
    type = 'link',
    density = TRUE,
    truth = truth,
    family_pars = family_pars
  ))

  preds <- rpois(10, 5)
  resids <- mvgam:::ds_resids_tw(truth = truth, fitted = preds, draw = 1)
  expect_true(all(!is.na(resids)))
})

# Skip actual model setups on CRAN as they take some time
test_that("family setups work correctly", {
  skip_on_cran()
  simdat <- sim_mvgam(family = poisson())
  mod <- mvgam(
    y ~ -1,
    trend_model = PW(),
    data = simdat$data_train,
    family = poisson(),
    run_model = FALSE
  )
  expect_true(inherits(mod, 'mvgam_prefit'))
  expect_no_error(capture_output(print(mod)))

  simdat <- sim_mvgam(family = nb(), n_lv = 2)
  mod <- mvgam(
    y ~ -1,
    trend_model = PW(),
    data = simdat$data_train,
    family = nb(),
    run_model = FALSE
  )
  expect_true(inherits(mod, 'mvgam_prefit'))
  expect_no_error(capture_output(print(mod)))

  simdat <- sim_mvgam(family = lognormal(), trend_model = VAR())
  mod <- mvgam(
    y ~ -1,
    trend_model = PW(),
    data = simdat$data_train,
    family = lognormal(),
    run_model = FALSE
  )
  expect_true(inherits(mod, 'mvgam_prefit'))
  expect_no_error(capture_output(print(mod)))

  simdat <- sim_mvgam(family = bernoulli(), trend_model = VAR(cor = TRUE))
  mod <- mvgam(
    y ~ -1,
    trend_model = PW(),
    data = simdat$data_train,
    family = bernoulli(),
    run_model = FALSE
  )
  expect_true(inherits(mod, 'mvgam_prefit'))
  expect_no_error(capture_output(print(mod)))

  simdat <- sim_mvgam(family = student_t(), trend_model = GP())
  mod <- mvgam(
    y ~ -1,
    trend_model = PW(),
    data = simdat$data_train,
    family = student_t(),
    run_model = FALSE
  )
  expect_true(inherits(mod, 'mvgam_prefit'))
  expect_no_error(capture_output(print(mod)))

  simdat <- sim_mvgam(
    family = Gamma(),
    seasonality = 'shared',
    trend_model = AR(p = 3)
  )
  mod <- mvgam(
    y ~ -1,
    trend_model = PW(),
    data = simdat$data_train,
    family = Gamma(),
    run_model = FALSE
  )
  expect_true(inherits(mod, 'mvgam_prefit'))
  expect_no_error(capture_output(print(mod)))

  simdat <- sim_mvgam(
    family = betar(),
    seasonality = 'hierarchical',
    trend_model = AR(p = 2)
  )
  mod <- mvgam(
    y ~ -1,
    trend_model = PW(),
    data = simdat$data_train,
    family = betar(),
    run_model = FALSE
  )
  expect_true(inherits(mod, 'mvgam_prefit'))
  expect_no_error(capture_output(print(mod)))
})
nicholasjclark/mvgam documentation built on April 17, 2025, 9:39 p.m.