tests/testthat/test-mvgam-methods.R

context("class methods")

test_that("inverse links working", {
  expect_true(is(mvgam:::family_invlinks('gaussian'), 'function'))
  expect_true(is(mvgam:::family_invlinks('Gamma'), 'function'))
  expect_true(is(mvgam:::family_invlinks('beta_binomial'), 'function'))
})

test_that("series_to_mvgam working", {
  data("sunspots")
  series <- cbind(sunspots, sunspots)
  colnames(series) <- c('blood', 'bone')
  expect_true(inherits(
    series_to_mvgam(series, frequency(series), 0.85),
    'list'
  ))

  # An xts object example
  dates <- seq(as.Date("2001-05-01"), length = 30, by = "quarter")
  data <- cbind(
    c(gas = rpois(30, cumprod(1 + rnorm(30, mean = 0.01, sd = 0.001)))),
    c(oil = rpois(30, cumprod(1 + rnorm(30, mean = 0.01, sd = 0.001))))
  )
  series <- xts::xts(x = data, order.by = dates)
  colnames(series) <- c('gas', 'oil')
  expect_list(series_to_mvgam(series, freq = 4, train_prop = 0.85))
})

test_that("stancode and standata working properly", {
  simdat <- sim_mvgam()
  mod <- mvgam(
    y ~
      s(season) +
        s(time, by = series),
    family = poisson(),
    data = simdat$data_train,
    run_model = FALSE
  )

  expect_character(stancode(mod))

  expect_list(standata(mod))
})

# Skip remaining time-consuming tests on CRAN
skip_on_cran()

test_that("add_residuals working properly", {
  mod <- mvgam:::mvgam_example1
  oldresids <- mod$resids
  mod <- add_residuals(mod)

  expect_true(all(unlist(lapply(seq_along(oldresids), function(x) {
    all.equal(dim(oldresids[[x]]), dim(mod$resids[[x]]))
  }))))
})

test_that("mcmc diagnostics working properly", {
  expect_true(inherits(nuts_params(mvgam:::mvgam_example1), 'data.frame'))
  expect_true(inherits(nuts_params(mvgam:::mvgam_example2), 'data.frame'))

  expect_true(inherits(rhat(mvgam:::mvgam_example1), 'numeric'))
  expect_true(inherits(rhat(mvgam:::mvgam_example4), 'numeric'))

  expect_true(inherits(SW(neff_ratio(mvgam:::mvgam_example1)), 'numeric'))
  expect_true(inherits(SW(neff_ratio(mvgam:::mvgam_example4)), 'numeric'))
})

test_that("compute_edf working properly", {
  mod <- mvgam:::mvgam_example1
  expect_no_error(capture_output(mvgam:::compute_edf(
    mod$mgcv_model,
    mod,
    'rho',
    'sigma_raw',
    conservative = FALSE
  )))

  mod <- mvgam:::mvgam_example4
  expect_no_error(capture_output(mvgam:::compute_edf(
    mod$trend_mgcv_model,
    mod,
    'rho_trend',
    'sigma_raw_trend',
    conservative = TRUE
  )))
})

test_that("conditional_effects works properly", {
  effects <- conditional_effects(mvgam:::mvgam_example1)
  lapply(effects, expect_ggplot)

  effects <- conditional_effects(mvgam:::mvgam_example2)
  lapply(effects, expect_ggplot)

  effects <- conditional_effects(mvgam:::mvgam_example3)
  lapply(effects, expect_ggplot)

  effects <- conditional_effects(mvgam:::mvgam_example4)
  lapply(effects, expect_ggplot)
})

test_that("mcmc_plot works properly", {
  expect_ggplot(mcmc_plot(mvgam:::mvgam_example1, type = "dens"))
  expect_ggplot(mcmc_plot(
    mvgam:::mvgam_example1,
    type = "scatter",
    variable = variables(mvgam:::mvgam_example1)$observation_betas[2:3, 1]
  ))
  expect_error(
    mcmc_plot(mvgam:::mvgam_example1, type = "density"),
    "Invalid plot type"
  )
  expect_ggplot(SW(mcmc_plot(mvgam:::mvgam_example2, type = "neff")))
  expect_silent(p <- mcmc_plot(mvgam:::mvgam_example3, type = "areas"))
  expect_error(
    mcmc_plot(mvgam:::mvgam_example3, type = "hex"),
    "Exactly 2 parameters must be selected"
  )
  expect_ggplot(mcmc_plot(mvgam:::mvgam_example4))
  expect_no_error(SW(pairs(mvgam:::mvgam_example2)))
  expect_no_error(SW(pairs(
    mvgam:::mvgam_example4,
    variable = c('sigma'),
    regex = TRUE
  )))
})

test_that("pp_check and ppc work properly", {
  expect_ggplot(SW(SM(pp_check(mvgam:::mvgam_example1))))
  expect_ggplot(SW(SM(pp_check(
    mvgam:::mvgam_example1,
    newdata = mvgam:::mvgam_example1$obs_data[1:10, ]
  ))))
  expect_ggplot(SW(SM(pp_check(mvgam:::mvgam_example2, "stat", ndraws = 5))))
  expect_ggplot(SW(SM(pp_check(mvgam:::mvgam_example3, "error_binned"))))
  expect_ggplot(SW(SM(pp_check(
    mvgam:::mvgam_example3,
    "resid_hist",
    ndraws = 5
  ))))
  expect_ggplot(SW(SM(pp_check(
    mvgam:::mvgam_example1,
    ndraws = 5,
    type = 'resid_hist_grouped',
    group = 'series'
  ))))
  pp <- SW(SM(pp_check(
    object = mvgam:::mvgam_example4,
    type = "ribbon_grouped",
    group = "series",
    x = "season"
  )))
  expect_ggplot(pp)
  pp <- SW(SM(pp_check(
    mvgam:::mvgam_example2,
    type = "violin_grouped",
    group = "season",
    newdata = mvgam:::mvgam_example2$obs_data[1:10, ]
  )))
  expect_ggplot(pp)
  expect_ggplot(SW(SM(pp_check(mvgam:::mvgam_example4, prefix = "ppd"))))

  expect_no_error(ppc(mvgam:::mvgam_example4))
  expect_error(ppc(mvgam:::mvgam_example1, type = 'banana'))
  expect_no_error(ppc(mvgam:::mvgam_example1, type = 'hist'))
  expect_error(
    ppc(mvgam:::mvgam_example3, type = 'rootogram'),
    'Rootograms not supported for checking non-count data'
  )
})

test_that("model.frame gives expected output structure", {
  mod_data <- model.frame(mvgam:::mvgam_example1)

  # model.frame should give the exact same data used for modelling, including
  # any NAs in the outcome variable
  expect_true(identical(
    data.frame(y = mod_data$y, season = mod_data$season),
    data.frame(
      y = mvgam:::mvgam_example1$obs_data$y,
      season = mvgam:::mvgam_example1$obs_data$season
    )
  ))

  # The setup mgcv model should have the same number of observations, but with
  # these NAs imputed
  mod_data <- model.frame(mvgam:::mvgam_example1$mgcv_model)
  expect_equal(NROW(mod_data), NROW(mvgam:::mvgam_example1$obs_data))
  expect_false(any(is.na(mod_data)))
})

test_that("as.data.frame and friends have resonable outputs", {
  out <- as.data.frame(mvgam:::mvgam_example4, variable = 'betas')
  expect_s3_class(out, "data.frame")
  expect_equal(
    names(out),
    c(
      "(Intercept)",
      "seriesseries_2",
      "s(season).1",
      "s(season).2",
      "s(season).3"
    )
  )

  out <- as.data.frame(mvgam:::mvgam_example4, variable = 'trend_params')
  expect_s3_class(out, "data.frame")
  expect_equal(names(out)[1], "alpha_gp[1]")

  out <- as.data.frame(mvgam:::mvgam_example4, variable = 'obs_params')
  expect_s3_class(out, "data.frame")
  expect_equal(names(out), c("sigma_obs[1]", "sigma_obs[2]"))

  out <- as.matrix(mvgam:::mvgam_example2, variable = 'obs_params')
  expect_true(inherits(out, "matrix"))
  expect_equal(dimnames(out)[[2]], c("sigma_obs[1]", "sigma_obs[2]"))
})

test_that("coef has resonable outputs", {
  out <- coef(mvgam:::mvgam_example1)
  expect_equal(
    rownames(out),
    c("(Intercept)", "s(season).1", "s(season).2", "s(season).3")
  )
  expect_equal(dim(out), c(4, 5))
})

test_that("logLik has reasonable ouputs", {
  liks <- logLik(mvgam:::mvgam_example4)
  expect_equal(dim(liks), c(5, NROW(mvgam:::mvgam_example2$obs_data)))
  # NAs in observations should propagate for likelihood calculations
  expect_true(all(is.na(liks[, which(is.na(
    mvgam:::mvgam_example2$obs_data$y
  ))])))
})

test_that("predict has reasonable outputs", {
  newdat1 <- data.frame(series = 'series_1')
  expect_error(
    predict(mvgam_example1, newdata = newdat1),
    "the following required variables are missing from newdata:\n season"
  )

  newdat2 <- data.frame(series = factor('series_1'), time = 1)
  expect_error(
    predict(mvgam_example1, newdata = newdat2),
    "the following required variables are missing from newdata:\n season"
  )

  newdat3 <- list(series = factor('series_1'), time = 1)
  expect_error(
    predict(mvgam_example4, newdata = newdat3),
    "the following required variables are missing from newdata:\n season"
  )

  gaus_preds <- predict(mvgam:::mvgam_example4, type = 'link', summary = FALSE)
  expect_equal(dim(gaus_preds), c(5, NROW(mvgam:::mvgam_example2$obs_data)))

  gaus_preds <- predict(
    mvgam:::mvgam_example3,
    type = 'response',
    summary = FALSE
  )
  expect_equal(dim(gaus_preds), c(5, NROW(mvgam:::mvgam_example3$obs_data)))

  expect_error(
    predict(mvgam:::mvgam_example1, type = 'latent_N'),
    '"latent_N" type only available for N-mixture models',
    fixed = TRUE
  )

  preds <- predict(mvgam:::mvgam_example3, type = 'terms')
  expect_true(inherits(preds, 'list'))
  expect_true(all.equal(names(preds$obs_effects), c('fit', 'se.fit')))
  expect_true(is.null(preds$process_effects))

  preds <- predict(mvgam:::mvgam_example2, type = 'terms')
  expect_true(inherits(preds, 'list'))
  expect_true(length(preds$obs_effects) == 0)
  expect_true(!is.null(preds$process_effects))

  preds <- predict(mvgam:::mvgam_example4, type = 'terms', summary = FALSE)
  expect_true(inherits(preds, 'list'))
  expect_true(is.matrix(preds$obs_effects[[1]]))
})

test_that("get_predict has reasonable outputs", {
  gaus_preds <- predict(
    mvgam:::mvgam_example1,
    type = 'link',
    process_error = FALSE,
    summary = FALSE
  )
  meffects_preds <- get_predict(
    mvgam:::mvgam_example1,
    newdata = mvgam:::mvgam_example1$obs_data,
    type = 'link'
  )
  expect_true(NROW(meffects_preds) == NCOL(gaus_preds))
  expect_true(identical(meffects_preds$estimate, apply(gaus_preds, 2, median)))
})

test_that("hindcast has reasonable outputs", {
  expect_error(
    forecast(mvgam:::mvgam_example2),
    'newdata must be supplied to compute forecasts'
  )
  hc <- hindcast(mvgam:::mvgam_example1)
  expect_s3_class(hc, 'mvgam_forecast')
  expect_true(is.null(hc$forecasts))
  expect_equal(
    dim(hc$hindcasts[[1]]),
    c(
      5,
      NROW(mvgam:::mvgam_example2$obs_data) /
        nlevels(mvgam:::mvgam_example2$obs_data$series)
    )
  )
  expect_equal(
    hc$train_observations[[1]],
    mvgam:::mvgam_example2$obs_data$y[
      which(mvgam:::mvgam_example2$obs_data$series == 'series_1')
    ]
  )
})

test_that("plot_mvgam_resids gives reasonable outputs", {
  expect_ggplot(plot_mvgam_resids(mvgam:::mvgam_example1))
  expect_ggplot(plot_mvgam_resids(mvgam:::mvgam_example2))
})

test_that("plot_mvgam_series gives reasonable outputs", {
  simdat <- sim_mvgam()
  expect_ggplot(plot_mvgam_series(
    data = simdat$data_train,
    newdata = simdat$data_test
  ))
  expect_ggplot(plot_mvgam_series(
    data = simdat$data_train,
    newdata = simdat$data_test,
    series = 'all'
  ))
  expect_ggplot(plot_mvgam_series(
    data = simdat$data_train,
    newdata = simdat$data_test,
    lines = FALSE
  ))
  expect_ggplot(plot_mvgam_series(
    data = simdat$data_train,
    newdata = simdat$data_test,
    lines = FALSE,
    series = 'all'
  ))

  # Should also work for list data
  dat_train <- list()
  for (i in 1:NCOL(simdat$data_train)) {
    dat_train[[i]] <- simdat$data_train[, i]
  }
  names(dat_train) <- colnames(simdat$data_train)

  dat_test <- list()
  for (i in 1:NCOL(simdat$data_test)) {
    dat_test[[i]] <- simdat$data_test[, i]
  }
  names(dat_test) <- colnames(simdat$data_test)

  expect_ggplot(plot_mvgam_series(data = dat_train))
  expect_ggplot(plot_mvgam_series(data = dat_train, newdata = dat_test))
  expect_ggplot(plot_mvgam_series(
    data = dat_train,
    newdata = dat_test,
    series = 'all'
  ))
  expect_ggplot(plot_mvgam_series(
    data = dat_train,
    newdata = dat_test,
    lines = FALSE
  ))
  expect_ggplot(plot_mvgam_series(
    data = dat_train,
    newdata = dat_test,
    lines = FALSE,
    series = 'all'
  ))

  # And for mvgam objects
  expect_ggplot(plot_mvgam_series(object = mvgam:::mvgam_example1, series = 1))
  expect_no_error(SW(plot(mvgam:::mvgam_example1, type = 'series')))
})

test_that("forecast and ensemble have reasonable outputs", {
  set.seed(1234)
  mvgam_examp_dat <- sim_mvgam(
    family = gaussian(),
    T = 40,
    prop_missing = 0.1,
    n_series = 2
  )
  newdat <- mvgam_examp_dat$data_test
  fc <- forecast(object = mvgam:::mvgam_example4, newdata = newdat)
  expect_s3_class(fc, 'mvgam_forecast')
  expect_equal(
    dim(fc$forecasts[[1]]),
    c(
      5,
      NROW(newdat) /
        nlevels(newdat$series)
    )
  )
  expect_equal(
    fc$test_observations[[1]],
    newdat$y[which(newdat$series == 'series_1')]
  )

  # Check that ensemble.mvgam_forecast works
  fc2 <- forecast(object = mvgam:::mvgam_example3, newdata = newdat)

  fc_ens <- ensemble(fc, fc2, ndraws = 3000)
  expect_equal(
    dim(fc_ens$forecasts[[1]]),
    c(
      3000,
      NROW(newdat) /
        nlevels(newdat$series)
    )
  )
  expect_equal(
    fc_ens$test_observations[[1]],
    newdat$y[which(newdat$series == 'series_1')]
  )

  fc_ens <- ensemble(fc, fc2, ndraws = 19)
  expect_equal(
    dim(fc_ens$forecasts[[1]]),
    c(
      19,
      NROW(newdat) /
        nlevels(newdat$series)
    )
  )

  # ndraws must be positive integer
  expect_error(ensemble(fc, fc2, ndraws = 0))
})

test_that("ensemble gives equal pooling", {
  set.seed(1234)
  mvgam_examp_dat <- sim_mvgam(
    family = gaussian(),
    T = 40,
    prop_missing = 0.1,
    n_series = 2
  )
  newdat <- mvgam_examp_dat$data_test
  fc <- forecast(object = mvgam:::mvgam_example4, newdata = newdat)
  fc2 <- forecast(object = mvgam:::mvgam_example3, newdata = newdat)

  # Replace casts with dummy data
  fc$hindcasts = lapply(
    fc$hindcasts,
    \(series_hcs) matrix(4, 1, ncol(series_hcs))
  )
  fc2$hindcasts = lapply(
    fc2$hindcasts,
    \(series_hcs) matrix(5, 10, ncol(series_hcs))
  )
  fc$forecasts = lapply(
    fc$forecasts,
    \(series_fcs) matrix(1, 1, ncol(series_fcs))
  )
  fc2$forecasts = lapply(
    fc2$forecasts,
    \(series_fcs) matrix(2, 10, ncol(series_fcs))
  )

  n_draws <- 500
  fc_ens <- ensemble(fc, fc2, ndraws = n_draws)

  # Expect that roughly 50% of hindcasts should be a 4 and 50% a 5
  four_props <- unlist(
    lapply(seq_along(fc_ens$hindcasts), function(x) {
      length(which(fc_ens$hindcasts[[x]] == 4)) / length(fc_ens$hindcasts[[x]])
    }),
    use.names = FALSE
  )
  expect_equal(four_props, rep(0.5, 2), tolerance = 0.03)

  # Expect that roughly 50% of forecasts should be a 1 and 50% a 2
  two_props <- unlist(
    lapply(seq_along(fc_ens$hindcasts), function(x) {
      length(which(fc_ens$forecasts[[x]] == 2)) / length(fc_ens$forecasts[[x]])
    }),
    use.names = FALSE
  )
  expect_equal(two_props, rep(0.5, 2), tolerance = 0.03)
})
nicholasjclark/mvgam documentation built on April 17, 2025, 9:39 p.m.