tests/testthat/test-rxode-issue-450.R

rxTest({

  test_that("Parallel solve vs single vs for; Issue RxODE#450", {
    TV_CLr  <- 6.54  # L/h, (CLr/F)
    TV_CLnr <- 2.39  # L/h, (CLnr/F)
    TV_Vc   <- 95.1  # L, (V/F)
    TV_alag <- 0.145 # h,
    TV_D    <- 0.512 # h,
    TV_Q    <- 2.1   #L/h, (Q/F)
    TV_Vp   <- 23.3  #L, (Vp/F)

    OM_D_normal <- log((128/100)^2+1)
    D_trans     <- 0.0819
    OM_CLr      <- log((36.2/100)^2+1)
    OM_CLnr     <- log((43.6/100)^2+1)
    OM_Vc       <- log((14.4/100)^2+1)
    OM_Q        <- log((15.1/100)^2+1)
    OM_Vp       <- log((37.6/100)^2+1)
    OM_CLr_CLnr <- 0.101
    OM_CLr_Vc   <- 0.0066

    rwishart <- function(df, p = nrow(SqrtSigma), Sigma, SqrtSigma = diag(p)) {
      if (!missing(Sigma)) {
        tmp <- svd(Sigma)
        SqrtSigma <- sqrt(tmp$d) * t(tmp$u)
      }
      if ((Ident <- missing(SqrtSigma)) && missing(p))
        stop("either p, Sigma or SqrtSigma must be specified")
      Z <- matrix(0, p, p)
      diag(Z) <- sqrt(rchisq(p, df:(df - p + 1)))
      if (p > 1) {
        pseq <- 1:(p - 1)
        Z[rep(p * pseq, pseq) + unlist(lapply(pseq, seq))] <- rnorm(p *
                                                                      (p - 1)/2)
      }
      if (Ident)
        crossprod(Z)
      else crossprod(Z %*% SqrtSigma)
    }

    sample.etas <- function(df, R, n) {
      R.inv = solve(df*R)
      R0 = chol(.5*(R.inv+t(R.inv)))  ## R0 is an upper-diag matrix
      R1 = solve(rwishart(df, SqrtSigma=R0))
      eta = rxRmvn(n = n, mu= rep(0, nrow(R)), sigma= .5*(R1+t(R1)))
      eta
    }

    rxWithSeed(100, {

      nsubj <- 200

      n.pts.pk <- 300  # number of subjects in PK model fitting

      eta_CLr_CLnr_Vc <- as.data.frame(sample.etas(df = n.pts.pk,
                                                   R = lotri({eta_CLr + eta_CLnr + eta_Vc ~
                                                                c(OM_CLr,
                                                                  OM_CLr_CLnr, OM_CLnr,
                                                                  OM_CLr_Vc, 0, OM_Vc)
                                                   }),
                                                   n = nsubj))

      eta_D_trans <- data.frame(eta_D_normal = rnorm(mean=0,sd=sqrt(OM_D_normal),n=nsubj)) %>%
        dplyr::mutate(eta_D = ((exp(eta_D_normal))^D_trans-1)/D_trans)

      par.pk <- data.frame(sim.id = seq(nsubj),
                           D = TV_D * exp(eta_D_trans$eta_D),
                           CLr = TV_CLr * exp(eta_CLr_CLnr_Vc$eta_CLr),
                           CLnr = TV_CLnr * exp(eta_CLr_CLnr_Vc$eta_CLnr),
                           Vc = TV_Vc * exp(eta_CLr_CLnr_Vc$eta_Vc),
                           Vp = TV_Vp * exp(rnorm(nsubj, 0, sqrt(OM_Vp))),
                           Q = TV_Q * exp(rnorm(nsubj, 0, sqrt(OM_Q))),
                           alag = TV_alag)

      # zero-order absorption with lag time 2-compartment
      mod <- rxode2({
        CL <- CLr+CLnr
        C2 <- central/Vc*1000
        all<- central+periph+output
        d/dt(central) <- - CL/Vc*central - Q/Vc*central + Q/Vp*periph
        d/dt(periph)  <- Q/Vc*central - Q/Vp*periph
        d/dt(output)  <- CL/Vc*central
        alag(central) <- alag
        dur(central) <- D
      })

      ev <-  et(amt=2,cmt="central",rate=-2,ii=24,addl=4) %>%
        et(seq(0,120,0.1))

      bar2x <- rxSolve(mod, ev, params=par.pk, cores=2L, returnType="data.frame")

      bar1x <- rxSolve(mod, ev, params=par.pk, cores=1L, returnType="data.frame")

      expect_equal(bar1x, bar2x)

      bar3x <- rxSolve(mod, ev, params=par.pk)

      # add for loop for testing against
      res.all = NULL

      for (id in seq(nsubj)) {
        # now combine
        ev.new <- eventTable() %>%
          add.dosing(dose = 2, nbr.doses = 5, dosing.interval = 24, dur = par.pk$D[par.pk$sim.id == id]) %>%
          add.sampling(seq(0,120,0.1))
        theta <- c(CLr = par.pk$CLr[par.pk$sim.id == id],
                   CLnr = par.pk$CLnr[par.pk$sim.id == id],
                   Vc = par.pk$Vc[par.pk$sim.id == id],
                   Q = par.pk$Q[par.pk$sim.id == id],
                   Vp = par.pk$Vp[par.pk$sim.id == id],
                   alag = par.pk$alag[par.pk$sim.id == id],
                   D = par.pk$D[par.pk$sim.id == id])
        res.id = data.frame(sim.id=id, rxSolve(mod, theta, ev.new, returnType="data.frame"))

        expect_equal(theta, unlist(bar3x$params[bar3x$params$sim.id == id, -1]))

        ## tmp  <- rbind(data.frame(res.id, type="for"), data.frame(bar3x[bar3x$sim.id == id,], type="single"))
        ## ggplot(tmp, aes(time, C2, col=type)) + geom_line()

        row.names(res.id) <- NULL
        res2 <- as.data.frame(bar3x[bar3x$sim.id == id,])
        row.names(res2) <- NULL
        expect_equal(res.id, res2, tolerance=1e-4)

        res.all = rbind(res.all, res.id)
      }
      expect_equal(bar2x, res.all)
    })

  })
})
nlmixr2/rxode2 documentation built on Jan. 11, 2025, 8:48 a.m.