citrus.predict | R Documentation |
Predict labels of new feature set
citrus.predict.classification(citrus.endpointModel, newFeatures)
citrus.predict.continuous(citrus.endpointModel, newFeatures)
citrus.predict(citrus.endpointModel, newFeatures)
citrus.endpointModel |
A |
newFeatures |
Features from samples to predict labels for. |
Matrix of predicted sample endpoints at all model regularization thresholds.
Robert Bruggner
# Where the data lives
dataDirectory = file.path(system.file(package = "citrus"),"extdata","example1")
# List of files to be clustered
fileList1 = data.frame("unstim"=list.files(dataDirectory,pattern=".fcs")[seq(from=2,to=20,by=2)])
# List of files to be mapped
fileList2 = data.frame("unstim"=list.files(dataDirectory,pattern=".fcs")[seq(from=1,to=19,by=2)])
# Read the data
citrus.combinedFCSSet1 = citrus.readFCSSet(dataDirectory,fileList1)
citrus.combinedFCSSet2 = citrus.readFCSSet(dataDirectory,fileList2)
# List of columns to be used for clustering
clusteringColumns = c("Red","Blue")
# Cluster first dataset
citrus.clustering = citrus.cluster(citrus.combinedFCSSet1,clusteringColumns)
# Map new data to exsting clustering
citrus.mapping = citrus.mapToClusterSpace(citrus.combinedFCSSet.new=citrus.combinedFCSSet2,citrus.combinedFCSSet.old=citrus.combinedFCSSet1,citrus.clustering)
# Large Enough Clusters
largeEnoughClusters = citrus.selectClusters(citrus.clustering)
# Clustered Features and mapped features
clusteredFeatures = citrus.calculateFeatures(citrus.combinedFCSSet1,clusterAssignments=citrus.clustering$clusterMembership,clusterIds=largeEnoughClusters)
mappedFeatures = citrus.calculateFeatures(citrus.combinedFCSSet2,clusterAssignments=citrus.mapping$clusterMembership,clusterIds=largeEnoughClusters)
# Labels
labels = factor(rep(c("Healthy","Diseased"),each=10))
# Build Endpoint Model
citrus.endpointModel = citrus.buildEndpointModel(clusteredFeatures,labels[seq(from=2,to=20,by=2)])
# Predict
citrus.predict(citrus.endpointModel,newFeatures=mappedFeatures)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.