# Copyright 2019 Observational Health Data Sciences and Informatics
#
# This file is part of Covid19EstimationHydroxychloroquine
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#' @export
doNegativeControlCalibration <- function(studyFolder,
databaseIds,
analysisIds,
maxCores) {
outcomesOfInterest <- getOutcomesOfInterest()
negativeControlOutcome <- getAllNegativeControls() %>% filter(targetEffectSize == 1)
for(databaseId in databaseIds){
singleCohortMethodResult<-readRDS(file.path(studyFolder,"shinyData",sprintf("cohort_method_result_%s.rds",databaseId)))
colnames(singleCohortMethodResult)<-SqlRender::snakeCaseToCamelCase(colnames(singleCohortMethodResult))
tcos <- unique(singleCohortMethodResult[, c("targetId", "comparatorId", "outcomeId")])
tcos <- tcos[tcos$outcomeId %in% outcomesOfInterest, ]
tcs<-unique(tcos[,c("targetId","comparatorId")])
for (analysisId in unique(analysisIds)){
for (i in seq(nrow(tcs))){
tc<- tcs[i,]
index<-singleCohortMethodResult$targetId==tc$targetId&
singleCohortMethodResult$comparatorId==tc$comparatorId&
singleCohortMethodResult$analysisId==analysisId&
singleCohortMethodResult$databaseId==databaseId&
!is.na(singleCohortMethodResult$logRr) &
!is.na(singleCohortMethodResult$seLogRr)
if(sum(index, na.rm=T)==0) next
negativeData<-singleCohortMethodResult[index &
singleCohortMethodResult$outcomeId %in% unique(negativeControlOutcome$outcomeId),]
null<-EmpiricalCalibration::fitNull(negativeData$logRr,
negativeData$seLogRr)
model<-EmpiricalCalibration::convertNullToErrorModel(null)
calibratedCi<-EmpiricalCalibration::calibrateConfidenceInterval(logRr=singleCohortMethodResult[index,]$logRr,
seLogRr=singleCohortMethodResult[index,]$seLogRr,
model=model,
ciWidth = 0.95)
singleCohortMethodResult[index,]$calibratedLogRr<-calibratedCi$logRr
singleCohortMethodResult[index,]$calibratedSeLogRr<-calibratedCi$seLogRr
singleCohortMethodResult[index,]$calibratedCi95Lb<-exp(calibratedCi$logLb95Rr)
singleCohortMethodResult[index,]$calibratedCi95Ub<-exp(calibratedCi$logUb95Rr)
singleCohortMethodResult[index,]$calibratedRr<-exp(calibratedCi$logRr)
}
}
colnames(singleCohortMethodResult)<-SqlRender::camelCaseToSnakeCase(colnames(singleCohortMethodResult))
saveRDS(singleCohortMethodResult,file.path(studyFolder,"shinyData",sprintf("cohort_method_result_%s.rds",databaseId)))
}
}
#' @export
doMetaAnalysis <- function(studyFolder,
outputFolders,
maOutputFolder,
maName = "Meta-analysis",
maxCores) {
ParallelLogger::logInfo("Performing meta-analysis")
shinyDataFolder <- file.path(maOutputFolder, "shinyData")
if (!file.exists(shinyDataFolder)) {
dir.create(shinyDataFolder, recursive = TRUE)
}
# get main results
loadResults <- function(outputFolder) { # outputFolder <- outputFolders[13]
database <- basename(outputFolder)
file <- list.files(file.path(outputFolder, "shinyData"), pattern = sprintf("cohort_method_result_%s.rds", database), full.names = TRUE)
result <- readRDS(file)
if (database %in% c("Optum_DOD", "Optum_EHR_COVID")) {
# As a hack for proper meta-analysis, replace the on-treatment results with the intent-to-treat ones for Optum.
iit_analysis_target_id <- 1200
result <- result %>% dplyr::filter(target_id == iit_analysis_target_id)
result$target_id <- 1103
result$comparator_id <- 1104
}
colnames(result) <- SqlRender::snakeCaseToCamelCase(colnames(result))
ParallelLogger::logInfo("Loading ", file, " for meta-analysis")
return(result)
}
allResults <- lapply(outputFolders, loadResults)
allResults <- do.call(rbind, allResults)
# # drop bad TAR in OptumEHR and poor death capture
# drops <-
# (allResults$databaseId == "OptumEHR" & allResults$analysisId == 1) | # panther on-treatment
# (allResults$databaseId %in% c("CCAE", "DAGermany", "JMDC", "MDCD", "MDCR", "OptumEHR", "OpenClaims", "AmbEMR") & allResults$outcomeId %in% c(18, 19)) | # death, cv death
# (allResults$databaseId %in% c("AmbEMR", "CPRD", "DAGermany", "IMRD", "SIDIAP") & allResults$outcomeId %in% c(22, 13, 20, 21, 17, 8, 11)) # databases with no IP
# allResults <- allResults[!drops, ]
# controls
allControls <- lapply(outputFolders, getAllControls)
allControls <- do.call(rbind, allControls)
allControls <- allControls[, c("targetId", "comparatorId", "outcomeId", "targetEffectSize")]
allControls <- allControls[!duplicated(allControls), ]
ncIds <- allControls$outcomeId[allControls$targetEffectSize == 1]
allResults$type[allResults$outcomeId %in% ncIds] <- "Negative control"
allResults$type[is.na(allResults$type)] <- "Outcome of interest"
groups <- split(allResults, paste(allResults$targetId, allResults$comparatorId, allResults$analysisId), drop = TRUE)
cluster <- ParallelLogger::makeCluster(min(maxCores, 12))
results <- ParallelLogger::clusterApply(cluster,
groups,
computeGroupMetaAnalysis,
shinyDataFolder = shinyDataFolder,
allControls = allControls)
ParallelLogger::stopCluster(cluster)
results <- do.call(rbind, results)
results <- results %>% mutate(databaseId = maName)
colnames(results) <- SqlRender::camelCaseToSnakeCase(colnames(results))
fileName <- file.path(maOutputFolder, paste0("cohort_method_results_", maName, ".csv"))
write.csv(results, fileName, row.names = FALSE, na = "")
fileName <- file.path(shinyDataFolder, paste0("cohort_method_result_", maName, ".rds"))
results <- subset(results, select = -c(type, mdrr))
saveRDS(results, fileName)
database <- data.frame(database_id = maName,
database_name = maName,
description = maName,
is_meta_analysis = 1,
stringsAsFactors = FALSE)
fileName <- file.path(shinyDataFolder, paste0("database_", maName, ".rds"))
saveRDS(database, fileName)
}
computeGroupMetaAnalysis <- function(group,
shinyDataFolder,
allControls) {
# group <- groups[["137 143 1"]]
analysisId <- group$analysisId[1]
targetId <- group$targetId[1]
comparatorId <- group$comparatorId[1]
ParallelLogger::logInfo("Performing meta-analysis for target ", targetId, ", comparator ", comparatorId, ", analysis", analysisId)
outcomeGroups <- split(group, group$outcomeId, drop = TRUE)
outcomeGroupResults <- lapply(outcomeGroups, computeSingleMetaAnalysis)
groupResults <- do.call(rbind, outcomeGroupResults)
ncs <- groupResults[groupResults$type == "Negative control", ]
ncs <- ncs[!is.na(ncs$seLogRr), ]
if (nrow(ncs) > 5) {
null <- EmpiricalCalibration::fitMcmcNull(ncs$logRr, ncs$seLogRr) # calibrate CIs without synthesizing positive controls, assumes error consistent across effect sizes
model <- EmpiricalCalibration::convertNullToErrorModel(null)
calibratedP <- EmpiricalCalibration::calibrateP(null = null,
logRr = groupResults$logRr,
seLogRr = groupResults$seLogRr)
calibratedCi <- EmpiricalCalibration::calibrateConfidenceInterval(logRr = groupResults$logRr,
seLogRr = groupResults$seLogRr,
model = model)
groupResults$calibratedP <- calibratedP$p
groupResults$calibratedRr <- exp(calibratedCi$logRr)
groupResults$calibratedCi95Lb <- exp(calibratedCi$logLb95Rr)
groupResults$calibratedCi95Ub <- exp(calibratedCi$logUb95Rr)
groupResults$calibratedLogRr <- calibratedCi$logRr
groupResults$calibratedSeLogRr <- calibratedCi$seLogRr
} else {
groupResults$calibratedP <- rep(NA, nrow(groupResults))
groupResults$calibratedRr <- rep(NA, nrow(groupResults))
groupResults$calibratedCi95Lb <- rep(NA, nrow(groupResults))
groupResults$calibratedCi95Ub <- rep(NA, nrow(groupResults))
groupResults$calibratedLogRr <- rep(NA, nrow(groupResults))
groupResults$calibratedSeLogRr <- rep(NA, nrow(groupResults))
}
return(groupResults)
}
computeSingleMetaAnalysis <- function(outcomeGroup) {
# outcomeGroup <- outcomeGroups[[1]]
maRow <- outcomeGroup[1, ]
outcomeGroup <- outcomeGroup[!is.na(outcomeGroup$seLogRr), ] # drops rows with zero events in T or C
if (nrow(outcomeGroup) == 0) {
maRow$targetSubjects <- 0
maRow$comparatorSubjects <- 0
maRow$targetDays <- 0
maRow$comparatorDays <- 0
maRow$targetOutcomes <- 0
maRow$comparatorOutcomes <- 0
maRow$rr <- NA
maRow$ci95Lb <- NA
maRow$ci95Ub <- NA
maRow$p <- NA
maRow$logRr <- NA
maRow$seLogRr <- NA
maRow$i2 <- NA
} else if (nrow(outcomeGroup) == 1) {
maRow <- outcomeGroup[1, ]
maRow$i2 <- 0
} else {
maRow$targetSubjects <- sumMinCellCount(outcomeGroup$targetSubjects)
maRow$comparatorSubjects <- sumMinCellCount(outcomeGroup$comparatorSubjects)
maRow$targetDays <- sum(outcomeGroup$targetDays)
maRow$comparatorDays <- sum(outcomeGroup$comparatorDays)
maRow$targetOutcomes <- sumMinCellCount(outcomeGroup$targetOutcomes)
maRow$comparatorOutcomes <- sumMinCellCount(outcomeGroup$comparatorOutcomes)
meta <- meta::metagen(outcomeGroup$logRr, outcomeGroup$seLogRr, sm = "RR", hakn = FALSE)
s <- summary(meta)
maRow$i2 <- s$I2$TE
rnd <- s$random
maRow$rr <- exp(rnd$TE)
maRow$ci95Lb <- exp(rnd$lower)
maRow$ci95Ub <- exp(rnd$upper)
maRow$p <- rnd$p
maRow$logRr <- rnd$TE
maRow$seLogRr <- rnd$seTE
# if (maRow$i2 < .40) {
# rnd <- s$random
# maRow$rr <- exp(rnd$TE)
# maRow$ci95Lb <- exp(rnd$lower)
# maRow$ci95Ub <- exp(rnd$upper)
# maRow$p <- rnd$p
# maRow$logRr <- rnd$TE
# maRow$seLogRr <- rnd$seTE
# } else {
# maRow$rr <- NA
# maRow$ci95Lb <- NA
# maRow$ci95Ub <- NA
# maRow$p <- NA
# maRow$logRr <- NA
# maRow$seLogRr <- NA
# }
}
if (is.na(maRow$logRr)) {
maRow$mdrr <- NA
} else {
alpha <- 0.05
power <- 0.8
z1MinAlpha <- qnorm(1 - alpha/2)
zBeta <- -qnorm(1 - power)
pA <- maRow$targetSubjects / (maRow$targetSubjects + maRow$comparatorSubjects)
pB <- 1 - pA
totalEvents <- abs(maRow$targetOutcomes) + abs(maRow$comparatorOutcomes)
maRow$mdrr <- exp(sqrt((zBeta + z1MinAlpha)^2/(totalEvents * pA * pB)))
}
maRow$databaseId <- "Meta-analysis"
maRow$sources <- paste(outcomeGroup$databaseId[order(outcomeGroup$databaseId)], collapse = ", ")
return(maRow)
}
sumMinCellCount <- function(counts) {
total <- sum(abs(counts))
if (any(counts < 0)) {
total <- -total
}
return(total)
}
# Modified version of 'getAllControls' function.
getAllNegativeControls <- function() {
pathToCsv <- system.file("settings", "NegativeControls.csv", package = "Covid19SusceptibilityAlphaBlockers")
allControls <- read.csv(pathToCsv)
allControls$oldOutcomeId <- allControls$outcomeId
allControls$targetEffectSize <- rep(1, nrow(allControls))
return(allControls)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.